Slide 1

Slide 1 text

.BQJMMBSZ4FNJOBS!1PMJ.* 5BJDIJ'VSVIBTIJBLB!NBQDPODJFSHF "PZBNB(BLVJO6OJW1PMJUFDOJDPEJ.JMBOP ˜NBQPDPODJFSHF $$#:4" )PXUPDPOUSJCVUFUP.BQJMMBSZ

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

4FQ"VH

Slide 4

Slide 4 text

@mapconcierge 5BJDIJ'VSVIBTIJ

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

“Street-level imagery”

Slide 9

Slide 9 text

Maps Satellite / 
 Aerial photos DEM/DSM 3D Models 3D PointClouds Street-level Imagery Non-optical sensors

Slide 10

Slide 10 text

Maps Satellite / 
 Aerial photos DEM/DSM 3D Models 3D PointClouds Street-level Imagery Non-optical sensors

Slide 11

Slide 11 text

What is the most famous street-level imagery service in the world?

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

https://about.google/brand-resource-center/products-and-services/geo-guidelines/#street-view

Slide 14

Slide 14 text

https://about.google/brand-resource-center/products-and-services/geo-guidelines/#street-view

Slide 15

Slide 15 text

https://about.google/brand-resource-center/products-and-services/geo-guidelines/#street-view

Slide 16

Slide 16 text

https://about.google/brand-resource-center/products-and-services/geo-guidelines/#street-view We cannot use Google StreetView data for our research!

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

Yes, We can!

Slide 19

Slide 19 text

If you don’t have Mapillary account, Let’s sign in now!

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

https://www.mapillary.com/mobile-apps

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

IUUQTXXXJOTUBHSBNDPNQ%%,PC$W0

Slide 24

Slide 24 text

IUUQTXXXNBQJMMBSZDPN

Slide 25

Slide 25 text

https://www.mapillary.com/app/?lat=35.56668611111112&lng=139.40266666666668&z=17&menu=false&pKey=rPaB0BhwRTpy_7Z6k31oBw&focus=photo&x=0.5097002855874749&y=0.3226481104316623&zoom=0

Slide 26

Slide 26 text

https://www.mapillary.com/app/?pKey=H8wioIgoZFucPG2B9un4zg&focus=photo&lat=34.772989&lng=138.015962&z=17

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

2.0B Num. of Street-level imageries. https://www.mapillary.com ( 2025/2/5 )

Slide 29

Slide 29 text

https://www.mapillary.com/app/

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

Generating 3D PointCloud by Photogrametory and NeRF method

Slide 32

Slide 32 text

http://blog.mapillary.com/update/2016/09/27/mapillary-joins-berkeley-deepdrive.html

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

Detecting objects by Machine Learning

Slide 35

Slide 35 text

http://blog.mapillary.com/update/2016/09/27/mapillary-joins-berkeley-deepdrive.html

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

150 object detection classes

Slide 41

Slide 41 text

https://www.mapillary.com/developer/api-documentation/detections

Slide 42

Slide 42 text

Do you know who is the No.1 Mapillary contributor in Italy?

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

I have published 16.1K 360 panoramic photos in the past week, Italy.

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

I have published 57.6K 360 panoramic photos in the past week, Italy.

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

in Milano

Slide 56

Slide 56 text

No content

Slide 57

Slide 57 text

No content

Slide 58

Slide 58 text

No content

Slide 59

Slide 59 text

No content

Slide 60

Slide 60 text

No content

Slide 61

Slide 61 text

No content

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

No content

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

IUUQTCMPHSJDPIDPNKB IUUQTCMPHSJDPIDPNFO

Slide 68

Slide 68 text

IUUQTMJOLNFEJVNDPN8:7CWN8*C

Slide 69

Slide 69 text

Y

Slide 70

Slide 70 text

5)&5"9 "EWBOUBHFT

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

# Built-in GPS

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

(14"OUFOOB

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

# GPS Time correction

Slide 77

Slide 77 text

※Time Adjuster via GNSS Plugin # GPS Time correction

Slide 78

Slide 78 text

IUUQTHJUIVCDPNUIFUBTLVOLXPSLTUIFUBQMVHJOUJNFBEKVTUFSWJBHOTT

Slide 79

Slide 79 text

No content

Slide 80

Slide 80 text

# Replaceable Battery

Slide 81

Slide 81 text

No content

Slide 82

Slide 82 text

No content

Slide 83

Slide 83 text

# USB power supply available

Slide 84

Slide 84 text

# USB power supply available ※No need to open the lid like a GoPro

Slide 85

Slide 85 text

No content

Slide 86

Slide 86 text

No content

Slide 87

Slide 87 text

*NBHF1SPKFDUJPO l&RVJ3FDUBOHVMBSz

Slide 88

Slide 88 text

IUUQTFOXJLJQFEJBPSHXJLJ&RVJSFDUBOHVMBS@QSPKFDUJPO

Slide 89

Slide 89 text

zenith directly below

Slide 90

Slide 90 text

Bashar Alsadik, 2018. Active use of panoramic mobile mapping systems for as built surveying and heritage documentation 
 https://www.researchgate.net/publication/323206937_Active_use_of_panoramic_mobile_mapping_systems_for_as_built_surveying_and_heritage_documentation directly below zenith zenith directly below

Slide 91

Slide 91 text

No content

Slide 92

Slide 92 text

11,008 px 5,504 px

Slide 93

Slide 93 text

11,008 px 5,504 px 11K Resolution: = 60 GigaPixels

Slide 94

Slide 94 text

No content

Slide 95

Slide 95 text

# Real-time automatic zenith correction

Slide 96

Slide 96 text

No content

Slide 97

Slide 97 text

No content

Slide 98

Slide 98 text

No content

Slide 99

Slide 99 text

No content

Slide 100

Slide 100 text

# SD card and internal memory(46GB)

Slide 101

Slide 101 text

No content

Slide 102

Slide 102 text

No content

Slide 103

Slide 103 text

)PX*VTFNZ5)&5"9

Slide 104

Slide 104 text

# Handheld style with monopod

Slide 105

Slide 105 text

# Handheld style with monopod ˞1SFGFSUIF*OTUBNPOPQPE

Slide 106

Slide 106 text

No content

Slide 107

Slide 107 text

Max: 3m

Slide 108

Slide 108 text

No content

Slide 109

Slide 109 text

# Shooting is in video mode

Slide 110

Slide 110 text

# Shooting is in video mode ※ 8K/2FPS mp4 + CAMM metadata ※ Maximum Recording Time: 25min

Slide 111

Slide 111 text

No content

Slide 112

Slide 112 text

# Mapillary Uploader

Slide 113

Slide 113 text

IUUQTXXXNBQJMMBSZDPNEFTLUPQVQMPBEFS

Slide 114

Slide 114 text

No content

Slide 115

Slide 115 text

No content

Slide 116

Slide 116 text

# Mapillary Tools

Slide 117

Slide 117 text

IUUQTHJUIVCDPNNBQJMMBSZNBQJMMBSZ@UPPMT

Slide 118

Slide 118 text

mapillary_tools process_and_upload *.mp4

Slide 119

Slide 119 text

No content

Slide 120

Slide 120 text

No content

Slide 121

Slide 121 text

No content

Slide 122

Slide 122 text

No content

Slide 123

Slide 123 text

5)&5"9 %JTBEWBOUBHFT

Slide 124

Slide 124 text

&YQFOTJWF

Slide 125

Slide 125 text

IUUQTSJDPIUIFUBFVQSPEVDUTSJDPIUIFUBY

Slide 126

Slide 126 text

*GZPVXBOUUPHFU QBOPSBNBDBNFSBʜ

Slide 127

Slide 127 text

No content

Slide 128

Slide 128 text

GoPro MAX is cheaper

Slide 129

Slide 129 text

# Embarrassing e-Compass Calibration

Slide 130

Slide 130 text

IUUQTEFWTUIFUBHVJEFIPXUPSFTFUSJDPIUIFUBDPNQBTT

Slide 131

Slide 131 text

No content

Slide 132

Slide 132 text

No content

Slide 133

Slide 133 text

No content

Slide 134

Slide 134 text

4IPSU)BOETPO

Slide 135

Slide 135 text

https://github.com/gisgeolab/mapillary4milano

Slide 136

Slide 136 text

No content

Slide 137

Slide 137 text

No content

Slide 138

Slide 138 text

No content

Slide 139

Slide 139 text

No content

Slide 140

Slide 140 text

No content

Slide 141

Slide 141 text

No content

Slide 142

Slide 142 text

No content

Slide 143

Slide 143 text

IUUQTXXXNBQJMMBSZDPNEFTLUPQVQMPBEFS

Slide 144

Slide 144 text

IUUQTXXXNBQJMMBSZDPNEFTLUPQVQMPBEFS

Slide 145

Slide 145 text

No content

Slide 146

Slide 146 text

No content

Slide 147

Slide 147 text

# Future

Slide 148

Slide 148 text

# Future * More high Resolution over Giga/Peta Pixel 
 * Realtime Capturing and Publishing 
 * High-precision object recognition * High-precision 3D Scanning 
 * Connecting Metaverse Platform

Slide 149

Slide 149 text

Maps Satellite / 
 Aerial photos DEM/DSM 3D Models 3D PointClouds Street-level Imagery Non-optical sensors

Slide 150

Slide 150 text

How to bring own large geospatial data set?

Slide 151

Slide 151 text

XXXSBTQCFSSZQJPSH

Slide 152

Slide 152 text

No content

Slide 153

Slide 153 text

No content

Slide 154

Slide 154 text

UNVT Portable Municipality Officer Web browser Orthomosaic Imageries Raster Tile Combined Raster/Vector Tile data set Local Wi-Fi

Slide 155

Slide 155 text

UNVT Portable Municipality Officer Web browser Orthomosaic Imageries Raster Tile Combined Raster/Vector Tile data set Local Wi-Fi

Slide 156

Slide 156 text

BYOG 
 Bring Your Own Geospatial data

Slide 157

Slide 157 text

No content

Slide 158

Slide 158 text

@mapconcierge