Slide 1

Slide 1 text

as.js A FL O C K of FU N C T I O N S COMBINATORS, LAMBDA CALCULUS, & CHURCH ENCODINGS in JAVASCRIPT

Slide 2

Slide 2 text

glebec glebec glebec glebec g_lebec Gabriel Lebec github.com/glebec/lambda-talk

Slide 3

Slide 3 text

a.a IDENTITY

Slide 4

Slide 4 text

λ JS I = a => a I := a.a

Slide 5

Slide 5 text

λ JS I = a => a I := a.a

Slide 6

Slide 6 text

λ JS I = a => a I := a.a

Slide 7

Slide 7 text

λ JS I = a => a I := a.a

Slide 8

Slide 8 text

λ JS I = a => a I := a.a

Slide 9

Slide 9 text

λ JS I(x) === ? I x = ? I := a.a I = a => a

Slide 10

Slide 10 text

λ JS I(x) === x I x = x I := a.a I = a => a

Slide 11

Slide 11 text

λ JS I(I) === ? I I = ? I := a.a I = a => a

Slide 12

Slide 12 text

λ JS I(I) === I I I = I I := a.a I = a => a

Slide 13

Slide 13 text

id 5 == 5

Slide 14

Slide 14 text

?

Slide 15

Slide 15 text

a.a FUNCTION SIGNIFIER

Slide 16

Slide 16 text

a.a FUNCTION SIGNIFIER PARAMETER VARIABLE

Slide 17

Slide 17 text

a.a FUNCTION SIGNIFIER PARAMETER VARIABLE RETURN EXPRESSION

Slide 18

Slide 18 text

a.a FUNCTION SIGNIFIER PARAMETER VARIABLE RETURN EXPRESSION LAMBDA ABSTRACTION

Slide 19

Slide 19 text

-CALCULUS SYNTAX expression ::= variable identifier | expression expression application | variable . expression abstraction | ( expression ) grouping

Slide 20

Slide 20 text

λ JS →

Slide 21

Slide 21 text

VARIABLES x x (a) (a)

Slide 22

Slide 22 text

f a f(a) f a b f(a)(b) (f a) b (f(a))(b) f (a b) f(a(b)) APPLICATIONS

Slide 23

Slide 23 text

a.b a => b a.b x a => b(x) a.(b x) a => (b(x)) (a.b) x (a => b)(x) a.b.a a => b => a a.(b.a) a => (b => a) ABSTRACTIONS

Slide 24

Slide 24 text

((a.a)b.c.b)(x)e.f β-REDUCTION

Slide 25

Slide 25 text

((a.a)b.c.b)(x)e.f β-REDUCTION

Slide 26

Slide 26 text

((a.a)b.c.b)(x)e.f β-REDUCTION

Slide 27

Slide 27 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f β-REDUCTION

Slide 28

Slide 28 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f β-REDUCTION

Slide 29

Slide 29 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f β-REDUCTION

Slide 30

Slide 30 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f β-REDUCTION

Slide 31

Slide 31 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f β-REDUCTION

Slide 32

Slide 32 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f β-REDUCTION

Slide 33

Slide 33 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f = x β-REDUCTION

Slide 34

Slide 34 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f = x β-REDUCTION* β-NORMAL FORM *not covered: evaluation order, variable collision avoidance

Slide 35

Slide 35 text

f.ff MOCKINGBIRD

Slide 36

Slide 36 text

λ JS M = f => f(f) M := f.ff

Slide 37

Slide 37 text

λ JS M = f => f(f) M := f.ff

Slide 38

Slide 38 text

λ JS M = f => f(f) M := f.ff

Slide 39

Slide 39 text

λ JS M = f => f(f) M := f.ff

Slide 40

Slide 40 text

λ JS M(I) === ? M I = ? M := f.ff

Slide 41

Slide 41 text

λ JS M(I) === I(I) && I(I) === ? M I = I I = ? M := f.ff

Slide 42

Slide 42 text

λ JS M(I) === I(I) && I(I) === I M I = I I = I M := f.ff

Slide 43

Slide 43 text

λ JS M(M) === ? M M = ? M := f.ff

Slide 44

Slide 44 text

λ JS M(M) === M(M) === ? M M = M M = ? M := f.ff

Slide 45

Slide 45 text

λ JS M M = M M = M M = Ω // stack overflow M := f.ff M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M

Slide 46

Slide 46 text

λ JS ω ω = ω ω = ω ω = Ω // stack overflow M := f.ff M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M

Slide 47

Slide 47 text

a.b.c.b a => b => c => b abc.b a => b => c => b (a, b, c) => b = ABSTRACTIONS, again

Slide 48

Slide 48 text

((a.a)bc.b)(x)e.f β-REDUCTION, again

Slide 49

Slide 49 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f β-REDUCTION, again

Slide 50

Slide 50 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f β-REDUCTION, again

Slide 51

Slide 51 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f β-REDUCTION, again

Slide 52

Slide 52 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f β-REDUCTION, again

Slide 53

Slide 53 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f = x β-REDUCTION, again β-NORMAL FORM

Slide 54

Slide 54 text

ab.a KESTREL

Slide 55

Slide 55 text

λ JS K = a => b => a K := ab.a = a.b.a

Slide 56

Slide 56 text

λ JS K = a => b => a K := ab.a = a.b.a

Slide 57

Slide 57 text

λ JS K = a => b => a K := ab.a = a.b.a

Slide 58

Slide 58 text

λ JS K = a => b => a K := ab.a = a.b.a

Slide 59

Slide 59 text

λ JS K(M)(I) === ? K M I = ? K := ab.a K = a => b => a

Slide 60

Slide 60 text

λ JS K(M)(I) === M K M I = M K := ab.a K = a => b => a

Slide 61

Slide 61 text

λ JS K(M)(I) === M K(I)(M) === ? K M I = M K I M = ? K := ab.a K = a => b => a

Slide 62

Slide 62 text

λ JS K(M)(I) === M K(I)(M) === I K M I = M K I M = I K := ab.a K = a => b => a

Slide 63

Slide 63 text

const 7 2 == 7

Slide 64

Slide 64 text

λ JS K(I)(x) === I K I x = I K := ab.a K = a => b => a

Slide 65

Slide 65 text

λ JS K(I)(x)(y) === I(y) && I(y) === ? K I x y = I y = ? K := ab.a K = a => b => a

Slide 66

Slide 66 text

λ JS K I x y = I y = y K := ab.a K = a => b => a K(I)(x)(y) === I(y) && I(y) === y

Slide 67

Slide 67 text

λ JS K I x y = I y = y K := ab.a K = a => b => a K(I)(x)(y) === I(y) && I(y) === y

Slide 68

Slide 68 text

λ JS K I x y = I y = y K := ab.a K = a => b => a K(I)(x)(y) === I(y) && I(y) === y

Slide 69

Slide 69 text

ab.b KITE

Slide 70

Slide 70 text

λ JS KI = a => b => b KI = K(I) KI := ab.b = K I

Slide 71

Slide 71 text

λ JS KI(M)(K) === ? KI M K = ? KI := ab.b KI = a => b => b

Slide 72

Slide 72 text

λ JS KI(M)(K) === K KI M K = K KI := ab.b KI = a => b => b

Slide 73

Slide 73 text

λ JS KI(M)(K) === K KI(K)(M) === ? KI M K = K KI K M = ? KI := ab.b KI = a => b => b

Slide 74

Slide 74 text

λ JS KI(M)(K) === K KI(K)(M) === M KI M K = K KI K M = M KI := ab.b KI = a => b => b

Slide 75

Slide 75 text

?

Slide 76

Slide 76 text

SCHÖNFINKEL CURRY SMULLYAN Identitätsfunktion Konstante Funktion verSchmelzungsfunktion verTauschungsfunktion Zusammensetzungsf. I
 K
 S
 C
 B Idiot
 Kestrel
 Starling
 Cardinal
 Bluebird Ibis?

Slide 77

Slide 77 text

No content

Slide 78

Slide 78 text

?

Slide 79

Slide 79 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER TH E FO R M A L I Z AT I O N O F MAT H E M AT I C A L LO G I C

Slide 80

Slide 80 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER FO R M A L NO TAT I O N FO R FU N C T I O N S 1889 PE A N O AR I T H M E T I C

Slide 81

Slide 81 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER AX I O M AT I C LO G I C · FN NO TAT I O N FU N C T I O N S A S GR A P H S · CU R RY I N G 1891

Slide 82

Slide 82 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER PR I N C I P I A MAT H E M AT I C A 1910 RU S S E L L ’S PA R A D OX · FN NO TAT I O N

Slide 83

Slide 83 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER CO M B I N AT O RY LO G I C CO M B I N AT O R S · CU R RY I N G 1920

Slide 84

Slide 84 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER FU N C T I O N A L SY S T E M O F SE T TH E O RY 1925 (OV E R L A P P E D W I T H CO M B I N AT O RY LO G I C )

Slide 85

Slide 85 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER CO M B I N AT O RY LO G I C (AG A I N ) CO M B I N AT O R S · M A N Y C O N T R I B U T I O N S 1926

Slide 86

Slide 86 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER D I S C OV E R S SC H Ö N F I N K E L “This paper anticipates much of what I have done.” 1927

Slide 87

Slide 87 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER IN C O M P L E T E N E S S TH E O R E M S 1931 EN D I N G T H E SE A RC H FO R SU F F I C I E N T AX I O M S

Slide 88

Slide 88 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER -CA L C U L U S AN EF F E C T I V E MO D E L O F CO M P U TAT I O N 1932

Slide 89

Slide 89 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER I N C O N S I S T E N C Y O F S P E C I A L I Z E D 1931–1936 C O N S I S T E N C Y O F P U R E

Slide 90

Slide 90 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER SO LV E S T H E DE C I S I O N PRO B L E M V I A T H E -CA L C U L U S 1936

Slide 91

Slide 91 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER SO LV E S T H E DE C I S I O N PRO B L E M 1936 V I A T H E TU R I N G MAC H I N E

Slide 92

Slide 92 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER ES TA B L I S H E S T H E CH U RC H -TU R I N G TH E S I S 1936 -CA L C U L U S 㱻 TU R I N G MAC H I N E

Slide 93

Slide 93 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER O B TA I N S PH D U N D E R CH U RC H 1936–1938 PU B L I S H E S 1S T FI X E D -PO I N T CO M B I N AT O R

Slide 94

Slide 94 text

COMBINATORS functions with no free variables b.b combinator b.a not a combinator ab.a combinator a.ab not a combinator abc.c(e.b) combinator

Slide 95

Slide 95 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a first, const const KI Kite ab.b = KI second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°-1° composition (.) B1 Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id

Slide 96

Slide 96 text

CARDINAL fab.fba

Slide 97

Slide 97 text

λ JS C = f => a => b => f(b)(a) C := fab.fba

Slide 98

Slide 98 text

λ JS C(K)(I)(M) === ? C K I M = ? C := fab.fba C = f => a => b => f(b)(a)

Slide 99

Slide 99 text

λ JS C(K)(I)(M) === M C K I M = M C := fab.fba C = f => a => b => f(b)(a)

Slide 100

Slide 100 text

λ JS C(K)(I)(M) === M C K I M = M C := fab.fba C = f => a => b => f(b)(a)

Slide 101

Slide 101 text

λ JS KI(I)(M) === M KI I M = M C := fab.fba C = f => a => b => f(b)(a)

Slide 102

Slide 102 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a first, const const KI Kite ab.b = KI second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°-1° composition (.) B1 Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id

Slide 103

Slide 103 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a first, const const KI Kite ab.b = KI = CK second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°-1° composition (.) B1 Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id

Slide 104

Slide 104 text

flip const 1 8 == 8

Slide 105

Slide 105 text

-CALCULUS abstract symbol rewriting functional computation TURING MACHINE hypothetical device state-based computation (f.ff)a.a purely functional programming languages higher-level machine-centric languages assembly languages machine code higher-level abstract stateful languages real computers

Slide 106

Slide 106 text

TM

Slide 107

Slide 107 text

EVERYTHING CAN BE FUNCTIONS

Slide 108

Slide 108 text

… TRUE FALSE NOT AND OR BEQ

Slide 109

Slide 109 text

λ JS const result = bool ? exp1 : exp2

Slide 110

Slide 110 text

λ JS const result = bool ? exp1 : exp2 // true

Slide 111

Slide 111 text

λ JS const result = bool ? exp1 : exp2 // false

Slide 112

Slide 112 text

λ JS const result = bool ? exp1 : exp2 result := ?

Slide 113

Slide 113 text

λ JS const result = bool ? exp1 : exp2 result := bool ? exp1 : exp2

Slide 114

Slide 114 text

λ JS const result = bool ? exp1 : exp2 result := bool exp1 exp2

Slide 115

Slide 115 text

λ JS const result = bool (exp1) (exp2) result := func exp1 exp2

Slide 116

Slide 116 text

λ JS result := func exp1 exp2 const result = bool (exp1) (exp2) // true

Slide 117

Slide 117 text

λ JS result := func exp1 exp2 const result = bool (exp1) (exp2) // false

Slide 118

Slide 118 text

λ JS const result = bool (exp1) (exp2) result := func exp1 exp2 TRUE FALSE

Slide 119

Slide 119 text

λ JS const result = bool (exp1) (exp2) result := func exp1 exp2 K KI

Slide 120

Slide 120 text

λ JS const T = K const F = KI TRUE := K FALSE := KI = C K CHURCH ENCODINGS: BOOLEANS

Slide 121

Slide 121 text

λ JS !p ! p

Slide 122

Slide 122 text

λ JS not(p) NOT p

Slide 123

Slide 123 text

λ JS not(p) NOT p F T F T

Slide 124

Slide 124 text

λ JS not(T) NOT T F T F T

Slide 125

Slide 125 text

λ JS not(F) NOT F F T F T

Slide 126

Slide 126 text

λ JS p F T F T p ( ) ( )

Slide 127

Slide 127 text

λ JS ( ) ( ) T F T F T T K K KI KI

Slide 128

Slide 128 text

λ JS ( ) ( ) F F T F T F KI KI K K

Slide 129

Slide 129 text

λ JS const not = p => p(F)(T) NOT := p.pFT

Slide 130

Slide 130 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 131

Slide 131 text

λ JS not(T) === F not(F) === T NOT T = F NOT F = T

Slide 132

Slide 132 text

λ JS not(K) === KI not(KI) === K NOT K = KI NOT (KI) = K ab.a ba.a ba.a ab.a

Slide 133

Slide 133 text

λ JS C(K) (chirp)(tweet) === tweet C(KI)(chirp)(tweet) === chirp C K = KI C (KI) = K

Slide 134

Slide 134 text

λ JS C(T) (chirp)(tweet) === tweet C(F) (chirp)(tweet) === chirp C T = F C F = T

Slide 135

Slide 135 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 136

Slide 136 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 137

Slide 137 text

λ JS const and = ? AND := ?

Slide 138

Slide 138 text

λ JS const and = p => q => ? AND := pq.?

Slide 139

Slide 139 text

λ JS const and = p => q => p(?)(¿) AND := pq.p?¿

Slide 140

Slide 140 text

λ JS const and = p => q => p(?)(¿) AND := pq.p?¿ F F

Slide 141

Slide 141 text

λ JS const and = p => q => p(?)(F) AND := pq.p?F

Slide 142

Slide 142 text

λ JS const and = p => q => p(?)(F) AND := pq.p?F T T

Slide 143

Slide 143 text

λ JS const and = p => q => p(q)(F) AND := pq.pqF

Slide 144

Slide 144 text

pq.p F q

Slide 145

Slide 145 text

pq.p F q

Slide 146

Slide 146 text

pq.p p q

Slide 147

Slide 147 text

pq.p p q

Slide 148

Slide 148 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 149

Slide 149 text

λ JS const or = ? OR := ?

Slide 150

Slide 150 text

λ JS const or = p => q => … OR := pq.…

Slide 151

Slide 151 text

λ JS const or = p => q => p(?)(¿) OR := pq.p?¿

Slide 152

Slide 152 text

λ JS const or = p => q => p(T)(¿) OR := pq.pT¿

Slide 153

Slide 153 text

λ JS const or = p => q => p(T)(q) OR := pq.pTq

Slide 154

Slide 154 text

λ JS const or = p => q => p(p)(q) OR := pq.ppq

Slide 155

Slide 155 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 156

Slide 156 text

pq.ppq

Slide 157

Slide 157 text

( pq.ppq ) xy = ?

Slide 158

Slide 158 text

( pq.ppq ) xy = xxy

Slide 159

Slide 159 text

( pq.ppq ) xy = xxy ( ? ) xy = xxy

Slide 160

Slide 160 text

( pq.ppq ) xy = xxy ( ? ) xy = xxy

Slide 161

Slide 161 text

( pq.ppq ) xy = xxy M xy = xxy

Slide 162

Slide 162 text

( pq.ppq ) xy = xxy M xy = xxy

Slide 163

Slide 163 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 164

Slide 164 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq = M* disjunction BEQ pq.p q (NOT q) equality

Slide 165

Slide 165 text

( ) pq.p( ) T T F F q q p => q => p(q(T)(F))(q(F)(T))

Slide 166

Slide 166 text

( ) pq.p ( ) T T F F q q

Slide 167

Slide 167 text

( ) pq.p ( ) T T F F q q

Slide 168

Slide 168 text

( ) pq.p ( ) T T F F q q

Slide 169

Slide 169 text

( ) pq.p ( ) T T F F q q

Slide 170

Slide 170 text

( ) pq.p ( ) T T F F q q

Slide 171

Slide 171 text

( ) pq.p ( ) T T F F q q

Slide 172

Slide 172 text

( ) pq.p ( ) T T F F q q BOOLEAN EQUALITY

Slide 173

Slide 173 text

pq.p ( ) T F q q

Slide 174

Slide 174 text

( ) pq.p q NOT q

Slide 175

Slide 175 text

( ) pq.p q q NOT p => q => p(q)(not(q))

Slide 176

Slide 176 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq = M* disjunction BEQ pq.p q (NOT q) equality

Slide 177

Slide 177 text

(ONE OF) DE MORGAN'S LAWS ¬(P ∧ Q) = (¬P) ∨ (¬Q) BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) !(p && q) === (!p) || (!q)

Slide 178

Slide 178 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y))
 ((fab.fba) ((xy.xyx) p q))
 ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 179

Slide 179 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y))
 ((fab.fba) ((xy.xyx) p q))
 ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 180

Slide 180 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y))
 ((fab.fba) ((xy.xyx) p q))
 ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 181

Slide 181 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y))
 ((fab.fba) ((xy.xyx) p q))
 ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 182

Slide 182 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y))
 ((fab.fba) ((xy.xyx) p q))
 ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 183

Slide 183 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y))
 ((fab.fba) ((xy.xyx) p q))
 ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 184

Slide 184 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y))
 ((fab.fba) ((xy.xyx) p q))
 ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 185

Slide 185 text

… ZERO ONE TWO THREE SUCC

Slide 186

Slide 186 text

… ZERO ONCE TWICE THRICE SUCC

Slide 187

Slide 187 text

λ JS n1 = f => a => f(a) n2 = f => a => f(f(a)) n3 = f => a => f(f(f(a))) N1 := fa.fa N2 := fa.f(fa) N3 := fa.f(f(fa))

Slide 188

Slide 188 text

λ JS n1(not)(T) = not(T) = ? N1 NOT T = NOT T = ? N1 := fa.fa N1 = f => a => f(a)

Slide 189

Slide 189 text

λ JS n1(not)(T) = not(T) = F N1 NOT T = NOT T = F N1 := fa.fa N1 = f => a => f(a)

Slide 190

Slide 190 text

λ JS n2(not)(T) = not(not(T)) = ? N2 NOT T = NOT (NOT T) = ? N2 := fa.f(fa) N2 = f => a => f(f(a))

Slide 191

Slide 191 text

λ JS n2(not)(T) = not(not(T)) = T N2 NOT T = NOT (NOT T) = T N2 := fa.f(fa) N2 = f => a => f(f(a))

Slide 192

Slide 192 text

λ JS n3(not)(T) = not(not(not(T))) = F N3 NOT T = NOT (NOT (NOT T))) = F N3 := fa.f(f(fa)) N3 = f => a => f(f(f(a)))

Slide 193

Slide 193 text

λ JS n0 = f => a => a n1 = f => a => f(a) n2 = f => a => f(f(a)) n3 = f => a => f(f(f(a))) N0 := fa.a N1 := fa.fa N2 := fa.f(fa) N3 := fa.f(f(fa))

Slide 194

Slide 194 text

λ JS n0(not)(T) = ? N0 NOT T = ? N0 := fa.a N3 = f => a => a

Slide 195

Slide 195 text

λ JS n0(not)(T) = T N0 NOT T = T N0 := fa.a N3 = f => a => a

Slide 196

Slide 196 text

CHURCH ENCODINGS: NUMERALS Sym. Name -Calculus Use N0 ZERO fa.a = F apply f no times to a N1 ONCE fa.f a = I* apply f once to a N2 TWICE fa.f (f a) apply 2-fold f to a N3 THRICE fa.f (f (f a)) apply 3-fold f to a N4 FOURFOLD fa.f (f (f (f a))) apply 4-fold f to a N5 FIVEFOLD fa.f (f (f (f (f a))))) apply 5-fold f to a

Slide 197

Slide 197 text

+ 1 ?

Slide 198

Slide 198 text

PEANO NUMBERS SUCC N1 = N2 SUCC N2 = N3 SUCC (SUCC N1) = N3

Slide 199

Slide 199 text

λ JS succ = n => ? SUCC := n.? SUCC N1 = N2

Slide 200

Slide 200 text

λ JS succ = n => ? SUCC := n.? SUCC fa.fa = fa.f(fa)

Slide 201

Slide 201 text

λ JS succ = n => f => a => f(n(f)(a)) SUCC := nfa.f(nfa) SUCC fa.fa = fa.f(fa)

Slide 202

Slide 202 text

λ JS succ = n => f => a => f(n(f)(a)) SUCC := nfa.f(nfa) SUCC fa.fa = fa.f(fa)

Slide 203

Slide 203 text

λ JS succ = n => f => a => f(n(f)(a)) SUCC := nfa.f(nfa) SUCC fa.fa = fa.f(fa)

Slide 204

Slide 204 text

SUCC N2 = (nfa.f(nfa)) N2 = fa.f(N2 f a) = fa.f(f(f a) = N3

Slide 205

Slide 205 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 206

Slide 206 text

BLUEBIRD fga.f(ga)

Slide 207

Slide 207 text

λ JS B = f => g => a => f(g(a)) B := fga.f(ga)

Slide 208

Slide 208 text

λ JS B(not)(not)(T) === ? B NOT NOT T = ? B := fga.f(ga) B = f => g => a => f(g(a))

Slide 209

Slide 209 text

λ JS B(not)(not)(T) === T B NOT NOT T = T B := fga.f(ga) B = f => g => a => f(g(a))

Slide 210

Slide 210 text

odd = not . even

Slide 211

Slide 211 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a true, first, const const KI Kite ab.b = KI = CK false, second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°←1° composition (.) B1 Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id

Slide 212

Slide 212 text

λ JS succ = n => f => a => f(n(f)(a)) SUCC := nfa.f(nfa)

Slide 213

Slide 213 text

λ JS succ = n => f => B(f)(n(f)) SUCC := nf.Bf(nf)

Slide 214

Slide 214 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 215

Slide 215 text

… ADD MULT POW

Slide 216

Slide 216 text

λ JS add = n => k => ? ADD := nk.? ADD N3 N5 = SUCC (SUCC (SUCC N5))

Slide 217

Slide 217 text

λ JS add = n => k => ? ADD := nk.? ADD N3 N5 = (SUCC ∘ SUCC ∘ SUCC) N5

Slide 218

Slide 218 text

λ JS add = n => k => ? ADD := nk.? ADD N3 N5 = N3 SUCC N5

Slide 219

Slide 219 text

λ JS add = n => k => n(succ)(k) ADD := nk.n SUCC k ADD N3 N5 = N3 SUCC N5

Slide 220

Slide 220 text

ADD N3 N5 = N3 SUCC N5 = THRICE SUCC FIVEFOLD = SUCC (SUCC (SUCC FIVEFOLD))) = EIGHTFOLD

Slide 221

Slide 221 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 222

Slide 222 text

λ JS mult = n => k => ? MULT := nk.? MULT N2 N3 = N6

Slide 223

Slide 223 text

λ JS mult = n => k => ? MULT := nk.? MULT N2 N3 f a = N6 f a

Slide 224

Slide 224 text

λ JS mult = n => k => ? MULT := nk.? MULT N2 N3 f a = (f ∘ f ∘ f ∘ f ∘ f ∘ f) a

Slide 225

Slide 225 text

λ JS mult = n => k => ? MULT := nk.? MULT N2 N3 f a = ((f ∘ f ∘ f) ∘ (f ∘ f ∘ f)) a

Slide 226

Slide 226 text

λ JS mult = n => k => ? MULT := nk.? MULT N2 N3 f a = ((N3 f) ∘ (N3 f)) a

Slide 227

Slide 227 text

λ JS mult = n => k => ? MULT := nk.? MULT N2 N3 f a = N2 (N3 f) a

Slide 228

Slide 228 text

λ JS mult = n => k => ? MULT := nk.? MULT N2 N3 f a = N2 (N3 f) a

Slide 229

Slide 229 text

λ JS mult = n => k => ? MULT := nk.? MULT N2 N3 f = N2 (N3 f)

Slide 230

Slide 230 text

λ JS mult = n => k => n(k(f)) MULT := nkf.n(kf) MULT N2 N3 f = N2 (N3 f)

Slide 231

Slide 231 text

MULT N2 N3 f = N2 (N3 f) = TWICE (THRICE f) = (f ∘ f ∘ f) ∘ (f ∘ f ∘ f) = SIXFOLD f

Slide 232

Slide 232 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 233

Slide 233 text

λ JS MULT := nkf.n(kf) MULT N2 N3 f = N2 (N3 f) mult = n => k => n(k(f))

Slide 234

Slide 234 text

λ JS MULT := nkf.n(kf) MULT N2 N3 f = (N2 ∘ N3) f mult = n => k => n(k(f))

Slide 235

Slide 235 text

λ JS MULT := nkf.n(kf) MULT N2 N3 f = (N2 ∘ N3) f mult = n => k => n(k(f))

Slide 236

Slide 236 text

λ JS MULT := nkf.n(kf) MULT N2 N3 = N2 ∘ N3 mult = n => k => n(k(f))

Slide 237

Slide 237 text

λ JS MULT := nkf.n(kf) MULT N2 N3 = B N2 N3 mult = n => k => n(k(f))

Slide 238

Slide 238 text

λ JS MULT := nkf.n(kf) MULT N2 N3 = B N2 N3 mult = n => k => n(k(f))

Slide 239

Slide 239 text

λ JS MULT := nkf.n(kf) MULT = B mult = n => k => n(k(f))

Slide 240

Slide 240 text

MULT := B

Slide 241

Slide 241 text

Mult := n k f . n ( k f) = B = f g a . f ( g a) -EQUIVALENCE

Slide 242

Slide 242 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 243

Slide 243 text

λ JS pow = n => k => ? POW := nk.? POW N2 N3 = N8

Slide 244

Slide 244 text

λ JS pow = n => k => ? POW := nk.? POW N2 N3 = N2 × N2 × N2

Slide 245

Slide 245 text

λ JS pow = n => k => ? POW := nk.? POW N2 N3 = N2 ∘ N2 ∘ N2

Slide 246

Slide 246 text

λ JS pow = n => k => ? POW := nk.? POW N2 N3 = N3 N2

Slide 247

Slide 247 text

λ JS pow = n => k => k(n) POW := nk.kn POW N2 N3 = N3 N2

Slide 248

Slide 248 text

POW N2 N3 = N3 N2 = THRICE TWICE = TWICE ∘ TWICE ∘ TWICE = EIGHTFOLD

Slide 249

Slide 249 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 250

Slide 250 text

THRUSH af.fa

Slide 251

Slide 251 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a true, first, const const KI Kite ab.b = KI = CK false, second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°←1° composition (.) Th Thrush af.fa hold an argument V Vireo abf.fab = BCT hold a pair of args flip . flip id B1 Blackbird fgab.f(gab) = BBB 1°←2° composition (.) . (.)

Slide 252

Slide 252 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a true, first, const const KI Kite ab.b = KI = CK false, second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°←1° composition (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id B1 Blackbird fgab.f(gab) = BBB 1°←2° composition (.) . (.)

Slide 253

Slide 253 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 254

Slide 254 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 255

Slide 255 text

… ISZERO

Slide 256

Slide 256 text

IS0 N0 = T IS0 N1 = F IS0 N2 = F …

Slide 257

Slide 257 text

λ JS is0 = n => ? IS0 := n.?

Slide 258

Slide 258 text

λ JS is0 = n => n(func)(arg) IS0 := n.n func arg

Slide 259

Slide 259 text

λ JS is0 = n => n(func)(arg) IS0 := n.n func arg N0

Slide 260

Slide 260 text

λ JS is0 = n => n(func)(T) IS0 := n.n func T N0

Slide 261

Slide 261 text

λ JS is0 = n => n(func)(T) IS0 := n.n func T N1 F

Slide 262

Slide 262 text

λ JS is0 = n => n(func)(T) IS0 := n.n func T N2 F

Slide 263

Slide 263 text

λ JS is0 = n => n(func)(T) IS0 := n.n func T N > 0 F

Slide 264

Slide 264 text

λ JS is0 = n => n(K(F))(T) IS0 := n.n (KF) T

Slide 265

Slide 265 text

λ JS is0 = n => n(K(F))(T) IS0 := n.n (KF) T IS0 N3 = KF(KF(KF(T))) = F

Slide 266

Slide 266 text

λ JS is0 = n => n(K(F))(T) IS0 := n.n (KF) T IS0 N3 = KF(KF(KF(T))) = F

Slide 267

Slide 267 text

λ JS is0 = n => n(K(F))(T) IS0 := n.n (KF) T IS0 N3 = KF(KF(KF(T))) = F

Slide 268

Slide 268 text

CHURCH ARITHMETIC: BOOLEAN OPS Name -Calculus Use IS0 n.n (K F) T test if n = 0 LEQ nk.IS0 (SUB n k) test if n <= k EQ nk.AND (LEQ n k) (LEQ k n) test if n = k GT nk.B1 NOT LEQ test if n > k

Slide 269

Slide 269 text

+ × ^

Slide 270

Slide 270 text

– 1 ?

Slide 271

Slide 271 text

PRED := n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0

Slide 272

Slide 272 text

N0: N0 (g.IS0 (g N1) ) (K N0) N0 I (B SUCC g) N0 N1: N1 (g.IS0 (g N1) ) (K N0) N0 I (B SUCC g) N0 N2: N2 (g.IS0 (g N1) ) (K N0) N0 I (B SUCC g) N1 N3: N3 (g.IS0 (g N1) ) (K N0) N0 I (B SUCC g) N2 (K N0) I (SUCC ∘ I) PRED := n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0

Slide 273

Slide 273 text

… PAIR FST SND PHI

Slide 274

Slide 274 text

VIREO abf.fab

Slide 275

Slide 275 text

λ JS V = a => b => f => f(a)(b) V := abf.fab

Slide 276

Slide 276 text

λ JS V(I)(M) // f => f(I)(M) V I M = (f.f I M) V := abf.fab V = a => b => f => f(a)(b)

Slide 277

Slide 277 text

λ JS V(I)(M)(K) // (f => f(I)(M))(K) === ? V I M K = (f.f I M) K = ? V := abf.fab V = a => b => f => f(a)(b)

Slide 278

Slide 278 text

λ JS V(I)(M)(K) // (f => f(I)(M))(K) === I V I M K = (f.f I M) K = I V := abf.fab V = a => b => f => f(a)(b)

Slide 279

Slide 279 text

λ JS V I M KI = (f.f I M) KI = M V := abf.fab V = a => b => f => f(a)(b) V(I)(M)(KI) // (f => f(I)(M))(KI) === M

Slide 280

Slide 280 text

No content

Slide 281

Slide 281 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a true, first, const const KI Kite ab.b = KI = CK false, second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°←1° composition (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id B1 Blackbird fgab.f(gab) = BBB 1°←2° composition (.) . (.)

Slide 282

Slide 282 text

CHURCH PAIRS Sym. Name -Calculus Use PAIR abf.fab = V pair two arguments FST p.pK extract first of pair SND p.p(KI) extract second of pair Φ PHI p.PAIR (SND p) (SUCC (SND p) copy 2nd to 1st, inc 2nd SET1ST cp.PAIR c (SND p) set first, immutably SET2ND cp.PAIR (FST p) c set second, immutably

Slide 283

Slide 283 text

FST := p.pK SND := p.p(KI)

Slide 284

Slide 284 text

CHURCH PAIRS Sym. Name -Calculus Use PAIR abf.fab = V pair two arguments FST p.pK extract first of pair SND p.p(KI) extract second of pair Φ PHI p.PAIR (SND p) (SUCC (SND p) copy 2nd to 1st, inc 2nd SET1ST cp.PAIR c (SND p) set first, immutably SET2ND cp.PAIR (FST p) c set second, immutably

Slide 285

Slide 285 text

λ JS phi = p => pair (snd(p)) (succ(snd(p))) PHI := p.V (SND p) (SUCC (SND p))

Slide 286

Slide 286 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = ?

Slide 287

Slide 287 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = ( , )

Slide 288

Slide 288 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, )

Slide 289

Slide 289 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8)

Slide 290

Slide 290 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8) Φ (N9, N2) = (N2, N3)

Slide 291

Slide 291 text

CHURCH PAIRS Sym. Name -Calculus Use PAIR abf.fab = V pair two arguments FST p.pK extract first of pair SND p.p(KI) extract second of pair Φ PHI p.PAIR (SND p) (SUCC (SND p) copy 2nd to 1st, inc 2nd SET1ST cp.PAIR c (SND p) set first, immutably SET2ND cp.PAIR (FST p) c set second, immutably

Slide 292

Slide 292 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8) Φ (N9, N2) = (N2, N3) Φ (N0, N0) = (N0, N1)

Slide 293

Slide 293 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8) Φ (N9, N2) = (N2, N3) Φ (N0, N0) = (N0, N1) Φ (N0, N1) = (N1, N2)

Slide 294

Slide 294 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8) Φ (N9, N2) = (N2, N3) Φ (N0, N0) = (N0, N1) Φ (N0, N1) = (N1, N2) Φ (N1, N2) = (N2, N3)

Slide 295

Slide 295 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8) Φ (N9, N2) = (N2, N3) Φ (N0, N0) = (N0, N1) Φ (N0, N1) = (N1, N2) Φ (N1, N2) = (N2, N3) N8 Φ (N0, N0) = ?

Slide 296

Slide 296 text

Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8) Φ (N9, N2) = (N2, N3) Φ (N0, N0) = (N0, N1) Φ (N0, N1) = (N1, N2) Φ (N1, N2) = (N2, N3) N8 Φ (N0, N0) = (N7, N8)

Slide 297

Slide 297 text

FST ( ) Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8) Φ (N9, N2) = (N2, N3) Φ (N0, N0) = (N0, N1) Φ (N0, N1) = (N1, N2) Φ (N1, N2) = (N2, N3) N8 Φ (N0, N0) = FST (N7, N8) = N7

Slide 298

Slide 298 text

FST ( ) Φ := p.PAIR (SND p) (SUCC (SND p)) Φ (M, N7) = (N7, N8) Φ (N9, N2) = (N2, N3) Φ (N0, N0) = (N0, N1) Φ (N0, N1) = (N1, N2) Φ (N1, N2) = (N2, N3) N8 Φ (N0, N0) = FST (N7, N8) = N7

Slide 299

Slide 299 text

λ JS pred = n => fst(n(phi)(pair(n0)(n0))) PRED := n.FST (n Φ (PAIR N0 N0))

Slide 300

Slide 300 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 301

Slide 301 text

… SUB LEQ EQ GT

Slide 302

Slide 302 text

λ JS sub = n => k => k(pred)(n) SUB := nk.k PRED n

Slide 303

Slide 303 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 304

Slide 304 text

λ JS leq = n => k => is0(sub(n)(k)) LEQ := nk.IS0 (SUB n k)

Slide 305

Slide 305 text

λ JS eq = n => k => and(leq(n)(k))(leq(k)(n)) EQ := nk.AND(LEQ n k)(LEQ k n)

Slide 306

Slide 306 text

CHURCH ARITHMETIC: BOOLEAN OPS Name -Calculus Use IS0 n.n (K F) T test if n = 0 LEQ nk.IS0 (SUB n k) test if n <= k EQ nk.AND (LEQ n k) (LEQ k n) test if n = k GT nk.B1 NOT LEQ test if n > k

Slide 307

Slide 307 text

λ JS eq = n => k => not(leq(n)(k)) GT := nk.NOT (LEQ n k)

Slide 308

Slide 308 text

λ JS eq = n => k => not(leq(n)(k)) GT := nk.NOT (LEQ n k)

Slide 309

Slide 309 text

λ JS eq = B(not)(leq) ??? GT := B NOT LEQ ???

Slide 310

Slide 310 text

λ JS eq = B(not)(leq) GT := B NOT LEQ

Slide 311

Slide 311 text

λ JS eq = n => k => not(leq(n)(k)) GT := nk.NOT (LEQ n k)

Slide 312

Slide 312 text

BLACKBIRD fgab.f(gab)

Slide 313

Slide 313 text

λ JS eq = B1(not)(leq) GT := B1 NOT LEQ B1 = fgab.f(gab)

Slide 314

Slide 314 text

CHURCH ARITHMETIC: BOOLEAN OPS Name -Calculus Use IS0 n.n (K F) T test if n = 0 LEQ nk.IS0 (SUB n k) test if n <= k EQ nk.AND (LEQ n k) (LEQ k n) test if n = k GT nk.B1 NOT LEQ test if n > k

Slide 315

Slide 315 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a true, first, const const KI Kite ab.b = KI = CK false, second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°←1° composition (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id B1 Blackbird fgab.f(gab) 1°←2° composition

Slide 316

Slide 316 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a true, first, const const KI Kite ab.b = KI = CK false, second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°←1° composition (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id B1 Blackbird fgab.f(gab) = BBB 1°←2° composition (.) . (.)

Slide 317

Slide 317 text

B C K I KI = K I = C K B1 = B B B Th = C I V = B C Th = B C (C I)

Slide 318

Slide 318 text

QUESTION how many combinators
 are needed to form a basis? 20? 10? 5?

Slide 319

Slide 319 text

STARLING · KESTREL S := abc.ac(bc) K := ab.a

Slide 320

Slide 320 text

THE SK COMBINATOR CALCULUS

Slide 321

Slide 321 text

I = S K K

Slide 322

Slide 322 text

I = S K K V = (S(K((S((S(K((
 S(KS))K)))S))(KK)))) ((S(K(S((SK)K))))K)

Slide 323

Slide 323 text

seriously though, why?

Slide 324

Slide 324 text

No content

Slide 325

Slide 325 text

No content

Slide 326

Slide 326 text

No content

Slide 327

Slide 327 text

No content

Slide 328

Slide 328 text

… ADDENDUM

Slide 329

Slide 329 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a true, first, const const KI Kite ab.b = KI = CK false, second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°←1° composition (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id B1 Blackbird fgab.f(gab) = BBB 1°←2° composition (.) . (.)

Slide 330

Slide 330 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K = C(KI) encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq = M* disjunction BEQ pq.p q (NOT q) equality

Slide 331

Slide 331 text

CHURCH ENCODINGS: NUMERALS Sym. Name -Calculus Use N0 ZERO fa.a = F apply f no times to a N1 ONCE fa.f a = I* apply f once to a N2 TWICE fa.f (f a) apply 2-fold f to a N3 THRICE fa.f (f (f a)) apply 3-fold f to a N4 FOURFOLD fa.f (f (f (f a))) apply 4-fold f to a N5 FIVEFOLD fa.f (f (f (f (f a))))) apply 5-fold f to a

Slide 332

Slide 332 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 333

Slide 333 text

CHURCH ARITHMETIC: BOOLEAN OPS Name -Calculus Use IS0 n.n (K F) T test if n = 0 LEQ nk.IS0 (SUB n k) test if n <= k EQ nk.AND (LEQ n k) (LEQ k n) test if n = k GT nk.B1 NOT LEQ test if n > k

Slide 334

Slide 334 text

CHURCH PAIRS Sym. Name -Calculus Use PAIR abf.fab = V pair two arguments FST p.pK extract first of pair SND p.p(KI) extract second of pair Φ PHI p.PAIR (SND p) (SUCC (SND p) copy 2nd to 1st, inc 2nd SET1ST cp.PAIR c (SND p) set first, immutably SET2ND cp.PAIR (FST p) c set second, immutably

Slide 335

Slide 335 text

f.M(x.f(Mx)) THE Y FIXED-POINT COMBINATOR

Slide 336

Slide 336 text

EVALUATION STRATEGIES (ab.b)((f.ff)f.ff) x = (b.b) x = x (ab.b)((f.ff)f.ff)x = (ab.b)((f.ff)f.ff)x = (ab.b)((f.ff)f.ff)x = (ab.b)((f.ff)f.ff)x = (ab.b)((f.ff)f.ff)x C A L L B Y N A M E (apply to args before reduction) C A L L B Y VA L U E (reduce args before application) (AKA normal order; lazy) (AKA applicative order; strict)

Slide 337

Slide 337 text

f.M(x.f(v.Mxv)) THE Z FIXED-POINT COMBINATOR

Slide 338

Slide 338 text

ADDITIONAL RESOURCES Combinator Birds · Rathman · http://bit.ly/2iudab9 To Mock a Mockingbird · Smullyan · http://amzn.to/2g9AlXl To Dissect a Mockingbird · Keenan · http://dkeenan.com/Lambda .:.
 A Tutorial Introduction to the Lambda Calculus · Rojas · http://bit.ly/1agRC97 Lambda Calculus · Wikipedia · http://bit.ly/1TsPkGn The Lambda Calculus · Stanford · http://stanford.io/2vtg8hp .:.
 History of Lambda-calculus and Combinatory Logic Cardone, Hindley · http://bit.ly/2wCxv4k .:.
 An Introduction to Functional Programming
 through Lambda Calculus · Michaelson · http://amzn.to/2vtts56