Slide 1

Slide 1 text

Factor Oracle for Machine Improvisation Jaime Arias Université de Bordeaux, LaBRI, UMR 5800 Inria - Bordeaux Sud-Ouest Septembre 2016

Slide 2

Slide 2 text

Preliminaries

Slide 3

Slide 3 text

Preliminaries Word A word s is a finite sequence s = s1 s2 ... sm of length |s| = m on a finite alphabet Σ.  # # +  # + /  # + s = Factor A word x ∈ Σ∗ is a factor of s if and only if s can be written s = uxv with u, v ∈ Σ∗. Given integers i, j where 1 ≤ i ≤ j ≤ m, we denote a factor of s as s[i ... j] = si si+1 ... sj .  # # +  # + /  # + s = s[3, 5] Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 1/10 1/10

Slide 4

Slide 4 text

Preliminaries Prefix A factor x of s is a prefix of s if s = xu with u ∈ Σ∗. The ith prefix of s, denoted prefs (i), is the prefix s[1 ... i].  # # +  # + /  # + s = prefs (4) Suffix A factor x of s is a suffix of s if s = ux with u ∈ Σ∗. The ith suffix of s, denoted suffs (i), is the suffix s[i ... m].  # # +  # + /  # + s = suffs (6) Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 2/10 2/10

Slide 5

Slide 5 text

Preliminaries Longest Repeated Suffix (LRS) A factor x of s is the longest repeated suffix of s if x is a suffix of s and |x| is maximal.  # # +  # + /  # + s = lrs(s) Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 3/10 3/10

Slide 6

Slide 6 text

Factor Oracle

Slide 7

Slide 7 text

Factor Oracle Overview 0 1 a 0 2 b 0 3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Forward Links Suffix Links Factor Oracle The factor oracle of a word s of length m is a deterministic finite automaton (Q, q0 , F, δ) where Q = {0, 1, ... , m} is the set of states, q0 = 0 is the starting state, F = Q is the set of terminal states and δ is the transition function. Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 4/10 4/10

Slide 8

Slide 8 text

Factor Oracle Overview 0 1 a 0 2 b 0 3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Forward Links Suffix Links Suffix Link The suffix link of a state i of the factor oracle of a word s, is equal to the state in which the longest repeated suffix (lrs) of s[1 ... i] is recognized. Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 4/10 4/10

Slide 9

Slide 9 text

Factor Oracle Overview 0 1 a 0 2 b 0 3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Suffix Links • s = abbcabcdabc Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 5/10 5/10

Slide 10

Slide 10 text

Factor Oracle Overview 0 1 a 0 2 b 0 3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Suffix Links • s = abbcabcdabc • lrs(s) = abc Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 5/10 5/10

Slide 11

Slide 11 text

Factor Oracle Overview 0 1 a 0 2 b 0 3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Suffix Links • s = abbcabcdabc • lrs(s) = abc • S(11) = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 5/10 5/10

Slide 12

Slide 12 text

Factor Oracle Algorithm - Construction Algorithm 1 Construction of a Factor Oracle 1: function FactorOracle(p = p1p2 ... pm ) 2: Create a new oracle P with an initial state 0 3: SP (0) ← −1 4: for i ← 1, m do 5: Oracle(p = p1p2 ... pi ) ← AddLetter(Oracle(p = p1p2 ... pi−1), pi ) 6: end for 7: return Oracle(p = p1p2 ... pm) 8: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 6/10 6/10

Slide 13

Slide 13 text

Factor Oracle Algorithm - Construction Algorithm 1 Construction of a Factor Oracle 1: function FactorOracle(p = p1p2 ... pm ) 2: Create a new oracle P with an initial state 0 3: SP (0) ← −1 4: for i ← 1, m do 5: Oracle(p = p1p2 ... pi ) ← AddLetter(Oracle(p = p1p2 ... pi−1), pi ) 6: end for 7: return Oracle(p = p1p2 ... pm) 8: end function  # # +  # + /  # + p = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 6/10 6/10

Slide 14

Slide 14 text

Factor Oracle Algorithm - Construction Algorithm 1 Construction of a Factor Oracle 1: function FactorOracle(p = p1p2 ... pm ) 2: Create a new oracle P with an initial state 0 3: SP (0) ← −1 4: for i ← 1, m do 5: Oracle(p = p1p2 ... pi ) ← AddLetter(Oracle(p = p1p2 ... pi−1), pi ) 6: end for 7: return Oracle(p = p1p2 ... pm) 8: end function  # # +  # + /  # + p = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 6/10 6/10

Slide 15

Slide 15 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 16

Slide 16 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 0 m = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 17

Slide 17 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  0 m = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 18

Slide 18 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 19

Slide 19 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 20

Slide 20 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 21

Slide 21 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 22

Slide 22 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  0 0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 23

Slide 23 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  0 0 m = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 24

Slide 24 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 0 0 m = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 25

Slide 25 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 0 0 m = 1 π1 = 1 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 26

Slide 26 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 0 0 m = 1 π1 = 1 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 27

Slide 27 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 1 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 28

Slide 28 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 0 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 29

Slide 29 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 30

Slide 30 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 31

Slide 31 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 32

Slide 32 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 0 m = 1 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 33

Slide 33 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 0 m = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 34

Slide 34 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 35

Slide 35 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 36

Slide 36 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 37

Slide 37 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 38

Slide 38 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 39

Slide 39 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 1 m = 2 π1 = 2 k = 0 lcs(2, 1) = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 40

Slide 40 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 1 m = 3 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 41

Slide 41 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b 0 0 0 1 m = 3 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 42

Slide 42 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b 0 0 0 1 m = 3 π1 = 3 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 43

Slide 43 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b 0 0 0 1 m = 3 π1 = 3 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 44

Slide 44 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c 0 0 0 1 m = 3 π1 = 3 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 45

Slide 45 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c 0 0 0 1 m = 3 π1 = 2 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 46

Slide 46 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c 0 0 0 1 m = 3 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 47

Slide 47 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 48

Slide 48 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 0 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 49

Slide 49 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 50

Slide 50 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 51

Slide 51 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 52

Slide 52 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 0 m = 3 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 53

Slide 53 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 0 m = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 54

Slide 54 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 55

Slide 55 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 56

Slide 56 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 57

Slide 57 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 58

Slide 58 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 59

Slide 59 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 1 m = 4 π1 = 4 k = 0 lcs(4, 0) = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 60

Slide 60 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 1 m = 5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 61

Slide 61 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 62

Slide 62 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 π1 = 5 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 63

Slide 63 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 π1 = 5 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 64

Slide 64 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 π1 = 5 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 65

Slide 65 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 π1 = 5 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 66

Slide 66 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 2 m = 5 π1 = 5 k = 1 lcs(5, 1) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 67

Slide 67 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 2 m = 6 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 68

Slide 68 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 69

Slide 69 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 π1 = 6 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 70

Slide 70 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 π1 = 6 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 71

Slide 71 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 π1 = 6 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 72

Slide 72 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 π1 = 6 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 73

Slide 73 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 2 m = 6 π1 = 6 k = 2 lcs(6, 3) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 74

Slide 74 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 2 m = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 75

Slide 75 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c 0 0 0 1 0 1 2 2 m = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 76

Slide 76 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c 0 0 0 1 0 1 2 2 m = 7 π1 = 7 k = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 77

Slide 77 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c 0 0 0 1 0 1 2 2 m = 7 π1 = 7 k = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 78

Slide 78 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d 0 0 0 1 0 1 2 2 m = 7 π1 = 7 k = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 79

Slide 79 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d 0 0 0 1 0 1 2 2 m = 7 π1 = 4 k = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 80

Slide 80 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d 0 0 0 1 0 1 2 2 m = 7 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 81

Slide 81 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 82

Slide 82 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 0 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 83

Slide 83 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 84

Slide 84 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 85

Slide 85 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 86

Slide 86 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 0 m = 7 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 87

Slide 87 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 0 m = 8 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 88

Slide 88 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 89

Slide 89 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 π1 = 8 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 90

Slide 90 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 π1 = 8 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 91

Slide 91 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 π1 = 8 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 92

Slide 92 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 π1 = 8 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 93

Slide 93 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 1 m = 8 π1 = 8 k = 0 lcs(8, 0) = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 94

Slide 94 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 95

Slide 95 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 96

Slide 96 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 π1 = 9 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 97

Slide 97 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 π1 = 9 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 98

Slide 98 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 π1 = 9 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 99

Slide 99 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 π1 = 9 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 100

Slide 100 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 9 π1 = 9 k = 1 lcs(9, 1) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 101

Slide 101 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 102

Slide 102 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 103

Slide 103 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 104

Slide 104 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 105

Slide 105 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 106

Slide 106 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 107

Slide 107 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 k = 2 lcs(10, 3) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 108

Slide 108 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 109

Slide 109 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: k ← FindBetter(m + 1, p[m + 1 − lrs(m + 1)]) 4: if k ̸= 0 then 5: lrspσ ← lrs(m + 1) + 1 6: Spσ ← k 7: end if 8: T(Spσ ) ← T(S(m + 1)) ∪ {m + 1} ◃ T(i) = {j | S(j) = i ∧ i < j ≤ m} 9: return Oracle(p = p1p2 ... pmσ) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 110

Slide 110 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: k ← FindBetter(m + 1, p[m + 1 − lrs(m + 1)]) 4: if k ̸= 0 then 5: lrspσ ← lrs(m + 1) + 1 6: Spσ ← k 7: end if 8: T(Spσ ) ← T(S(m + 1)) ∪ {m + 1} ◃ T(i) = {j | S(j) = i ∧ i < j ≤ m} 9: return Oracle(p = p1p2 ... pmσ) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 k = 7 FindBetter(11, a) = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 111

Slide 111 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: k ← FindBetter(m + 1, p[m + 1 − lrs(m + 1)]) 4: if k ̸= 0 then 5: lrspσ ← lrs(m + 1) + 1 6: Spσ ← k 7: end if 8: T(Spσ ) ← T(S(m + 1)) ∪ {m + 1} ◃ T(i) = {j | S(j) = i ∧ i < j ≤ m} 9: return Oracle(p = p1p2 ... pmσ) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 3 m = 10 π1 = 10 k = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 112

Slide 112 text

Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: k ← FindBetter(m + 1, p[m + 1 − lrs(m + 1)]) 4: if k ̸= 0 then 5: lrspσ ← lrs(m + 1) + 1 6: Spσ ← k 7: end if 8: T(Spσ ) ← T(S(m + 1)) ∪ {m + 1} ◃ T(i) = {j | S(j) = i ∧ i < j ≤ m} 9: return Oracle(p = p1p2 ... pmσ) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 3 m = 10 π1 = 10 k = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10

Slide 113

Slide 113 text

Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10

Slide 114

Slide 114 text

Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 π2 = 3 lcs(10, 3) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10

Slide 115

Slide 115 text

Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 π2 = 3 lcs(10, 3) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10

Slide 116

Slide 116 text

Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 π2 = 3 lcs(10, 3) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10

Slide 117

Slide 117 text

Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 π2 = 3 lcs(10, 3) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10

Slide 118

Slide 118 text

Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm 1: function FindBetter(i, σ) 2: for all the elements j of T(i) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10

Slide 119

Slide 119 text

Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm 1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10

Slide 120

Slide 120 text

Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm 1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10

Slide 121

Slide 121 text

Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm 1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10

Slide 122

Slide 122 text

Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm 1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = T(S(11)) = {7} Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10

Slide 123

Slide 123 text

Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm 1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = T(S(11)) = {7} j = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10

Slide 124

Slide 124 text

Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm 1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = T(S(11)) = {7} j = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10

Slide 125

Slide 125 text

Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm 1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = 7 T(S(11)) = {7} j = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10

Slide 126

Slide 126 text

Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require: Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10

Slide 127

Slide 127 text

Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require: Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 v = cabc q = 0.5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10

Slide 128

Slide 128 text

Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require: Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 v = cabc q = 0.5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10

Slide 129

Slide 129 text

Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require: Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 v = cabc q = 0.5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10

Slide 130

Slide 130 text

Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require: Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 v = cabca q = 0.5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10

Slide 131

Slide 131 text

Thank you for your attention!

Slide 132

Slide 132 text

Factor Oracle for Machine Improvisation Jaime Arias Université de Bordeaux, LaBRI, UMR 5800 Inria - Bordeaux Sud-Ouest Septembre 2016

Slide 133

Slide 133 text

References Gerard Assayag and Shlomo Dubnov. Using Factor Oracles for Machine Improvisation. Soft Computing, 8(9), sep 2004. Shlomo Dubnov, Gérard Assayag, and Arshia Cont. Audio Oracle: a New Algorithm for Fast Learning of audio Structures. In International Computer Music Conference, 2007. Arnaud Lefebvre, Thierry Lecroq, and Joël Alexandre. An Improved Algorithm for Finding Longest Repeats with a Modified Factor Oracle. J. Autom. Lang. Comb., 8(4):647–657, 2003. Greg Surges and Shlomo Dubnov. Feature Selection and Composition Using PyOracle. In AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 2013.