Slide 1

Slide 1 text

Tableau Theorem Prover for Intuitionistic Propositional Logic Larry Diehl Portland State University CS 510 - Mathematical Logic and Programming Languages Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 2

Slide 2 text

Motivation Tableau for Classical Logic If ¬A is contradictory in all paths, then A ∨ ¬A lets us conclude A is a tautology. For satisfiability, running tableau on A yield a (classical model) evaluation context σ. Tableau seems awfully tied to classical logic, is intuitionistic tableau doomed!? Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 3

Slide 3 text

Classical vs Intuitionistic Logic Classical Logic The meaning of a proposition is its truth value. Satisfiability: Does evaluating it yield true? A ∨ ¬A ¬¬A ⊃ A A ⊃ ¬¬A Intuitionistic Logic The meaning of a proposition is its constructive content. Satisfiability: Can you write it as a program? A ⊃ ¬¬A Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 4

Slide 4 text

Proof Theory for Intuitionistic Logic Γ, A B Γ A ⊃ B ⊃I Γ A ⊃ B Γ A Γ B ⊃E Γ A Γ B Γ A ∧ B ∧I Γ A ∧ B Γ A ∧E1 Γ A ∧ B Γ B ∧E2 Γ A Γ A ∨ B ∨I1 Γ B Γ A ∨ B ∨I2 Γ, A C Γ, B C Γ C ∨E Γ, A ⊥ Γ ¬A ¬I Γ A Γ ¬A Γ ⊥ ¬E Γ I Γ ⊥ Γ A ⊥E Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 5

Slide 5 text

Proof Theory for Classical Logic ... intuitionistic rules plus ... Γ A Γ ¬¬A ¬¬I Γ ¬¬A Γ A ¬¬E ...or... Γ A ∨ ¬A Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 6

Slide 6 text

Model Theory for Classical Logic Boolean Algebra B, false, true, &&, ||, ! Classical truth is a boolean value. Satisfiability σ A ⇔ σ A ≡ true σ A ⇔ σ A ≡ false Evaluation σ p ⇔ σ p σ A ∧ B ⇔ σ A && σ B σ A ∨ B ⇔ σ A || σ B σ A ⊃ B ⇔ !(σ A) || σ B σ ¬A ⇔ !(σ A) Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 7

Slide 7 text

Model Theory for Intuitionistic Logic Kripke Model C, ≤, ∅, Intuitionistic truth is constructive evidence, or a program. Forcing (intuitionistic satisfiability) Γ p ⇔ Γ p p Γ A ∧ B ⇔ Γ A × Γ B Γ A ∨ B ⇔ Γ A Γ B Γ A ⊃ B ⇔ Γ ≤ ∆ ⇒ ∆ A ⇒ ∆ B Γ ¬A ⇔ Γ ≤ ∆ ⇒ ∆ A ⇒ ⊥ Γ A ⇔ Γ ¬A Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 8

Slide 8 text

Classical vs Intuitionistic Model Theory Many more intuitionistic models than classical models because intuitionistic implication and negation allow arbitrary intrinsically distinct functions. Much bigger search space for an intuitionistic theorem prover! Evaluation σ A ⊃ B ⇔ !(σ A) || σ B σ ¬A ⇔ !(σ A) Forcing Γ A ⊃ B ⇔ Γ ≤ ∆ ⇒ ∆ A ⇒ ∆ B Γ ¬A ⇔ Γ ≤ ∆ ⇒ ∆ A ⇒ ⊥ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 9

Slide 9 text

Classical Tableau Calculus S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) S, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) S, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 10

Slide 10 text

Intuitionistic Tableau Calculus ST ⇔ {TA | TA ∈ S} S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) ST, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) ST, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 11

Slide 11 text

Classical Tableau Interpretation Gradually build an evaluation context σ for A (such that σ A), until tableau is finished or the model is contradictory. Judgments TA means A is true in the model. FA means A is false in the model. Inference Rules If the premise is true, then the conclusion is true. Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 12

Slide 12 text

Intuitionistic Tableau Interpretation Gradually build a “proof” of A (an “element” of Γ A), until tableau is finished or the model is contradictory. Judgments TA means we have a proof of A. FA means A we do not (yet) have a proof of A. Inference Rules If the premise is true, then the conclusion may be true. The conclusion is logically consistent with the premise. Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 13

Slide 13 text

Intuitionistic Tableau Calculus ST ⇔ {TA | TA ∈ S} S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) ST, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) ST, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 14

Slide 14 text

Closed Example A ⊃ A [{F(A⊃A)}], [{TA, FA}]. S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) ST, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) ST, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 15

Slide 15 text

Closed Example A ⊃ (A ∧ A) [{F(A⊃(A ∧ A))}], [{TA, F(A∧A))}], [{TA, FA}, {TA, FA}]. S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) ST, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) ST, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 16

Slide 16 text

Open Example A ∨ ¬A [{F(A∨¬A)}], [{FA, F(¬A)}], [{TA}]. S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) ST, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) ST, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 17

Slide 17 text

Closed Example A ⊃ (A ⊃ B) ⊃ B [{F(A⊃(A ⊃ B) ⊃ B)}], [{TA, F((A ⊃ B)⊃B)}], [{TA, T(A⊃B), FB}], [{TA, FA, FB}, {TA, TB, FB}]. S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) ST, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) ST, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 18

Slide 18 text

Classical vs Intuitionistic Tableau Search When looking for a closed tableau: Classical You can prioritize any rule to apply to S to shrink the search space. Intuitionistic You must try applying all rules to S, but can still prioritize some and backtrack if they fail. Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 19

Slide 19 text

“Open” Example ¬A ⊃ ¬A [{F(¬A⊃¬A)}], [{T(¬A), F(¬A)}], [{FA, F(¬A)}], [{TA}]. S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) ST, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) ST, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 20

Slide 20 text

Closed Example ¬A ⊃ ¬A [{F(¬A⊃¬A)}], [{T(¬A), F(¬A)}], [{T(¬A), TA}], [{FA, TA}]. S, T(A ∧ B) S, TA, TB T∧ S, F(A ∧ B) S, FA | S, FB F∧ S, T(A ∨ B) S, TA | S, TB T∨ S, F(A ∨ B) S, FA, FB F∨ S, T(A ⊃ B) S, FA | S, TB T⊃ S, F(A ⊃ B) ST, TA, FB F⊃ S, T(¬A) S, FA T¬ S, F(¬A) ST, TA F¬ Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 21

Slide 21 text

Using Classical vs Intuitionistic Tableau Classical To show that A is true: 1 Assume that A is false. 2 Build a tableau for ¬A. 3 If some sub-proposition is true and false, A must be true. Intuitionistic To show that A is provable: 1 Assume that A has not been proven. 2 Build a tableau for ¬A. 3 If some sub-proposition is proven and not yet proven, it must be impossible that A has not been proven. Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 22

Slide 22 text

Classical vs Intuitionistic Tableau Soundness Classical Have a model σ from the tableau conclusion, so check that σ A. Intuitionistic Have a tableau derivation of A, so construct an element of Γ A. Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 23

Slide 23 text

Intuitionistic Tableau Soundness Theorem Have a tableau derivation of A, so construct an element of Γ A. Fitting’s Proof By showing the contrapositive. Sadly, (¬B ⊃ ¬A) (A ⊃ B) intuitionistically. Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic

Slide 24

Slide 24 text

References Classical is to Intuitionistic as Smullyan is to Fitting Classical Tableau Book First Order Logic - Smullyan’68 Intuitionistic Tableau Book Intuitionistic Logic: Model Theory and Forcing - Fitting’69 Intuitionistic Tableau Optimization Papers An O(n log n)-Space Decision Procedure for Intuitionistic Propositional Logic - Hudelmaier’93 A Tableau Decision Procedure for Propositional Intuitionistic Logic - Avellone et. al.’06 Larry Diehl Tableau Theorem Prover for Intuitionistic Propositional Logic