Slide 10
Slide 10 text
Optimal transport
In recent years, optimal transport (a.k.a Earth mover’s distance,
Monge-Kantorovich problem, Wasserstein distance) has witnessed a lot of
applications:
Theory (Brenier, Gangbo, Villani, Figalli, et.al.); Gradient flows
(Otto, Villani, Maas, Miekle, et.al.); Proximal methods (Jordan,
Kinderlehrer, Otto et.al.);
Physics: GENERICs/Pre-GENERICs (Grmela and Ottinger, Doung
et.al.), Flux-gradient flows (Li, Liu, Osher);
Mean field games (Larsy, Lions et.al.);
Population games; Evolutionary game theory (Degond, Liu, Li,
et.al.);
Image processing (Rubner et.al. 2000, Tannenbaum, Georgiou,
et.al.);
Inverse problems (Stuart, Li, Osher, et.al.);
Scientific computing: (Benamou, Brenier, Carillo, Oberman, Peyre,
Osher, et. al.)
AI and Machine learning: See NIPS, ICLR, ICML 2015– 2023.
Minimal surfaces in Wasserstein spaces (Li, Georgiou);
Wasserstein common noises (Li); 10