Slide 1

Slide 1 text

Adjoint Error Estimation for Stochastic Collocation Methods Bettina Schieche Graduate School of Computational Engineering Numerical Analysis and Scientific Computing Technische Universität Darmstadt Numerical Analysis SIAM Conference on Uncertainty Quantification Raleigh, North Carolina USA, April 2, 2012 www.graduate-school-ce.de April 2, 2012

Slide 2

Slide 2 text

Outline Setting: PDEs with Random Parameters Adaptive Stochastic Collocation Method Adjoint Error Estimation Bettina Schieche | SIAM UQ12 | 2/17

Slide 3

Slide 3 text

Overview Setting: PDEs with Random Parameters Adaptive Stochastic Collocation Method Adjoint Error Estimation Bettina Schieche | SIAM UQ12 | 3/17

Slide 4

Slide 4 text

General Setting: PDE with Uncertainties Uncertainties might arise in: Boundary and initial conditions Material properties Forcing terms / source terms Topology (geometry of the system) Bettina Schieche | SIAM UQ12 | 4/17

Slide 5

Slide 5 text

Approach: PDEs with Random Parameters Uncertainties as correlated random fields = White noise (Itô stochastic calculus) Finite noise assumption: parametrization into random variables ξ (Karhunen-Loève expansion) Bettina Schieche | SIAM UQ12 | 5/17

Slide 6

Slide 6 text

Approach: PDEs with Random Parameters Uncertainties as correlated random fields = White noise (Itô stochastic calculus) Finite noise assumption: parametrization into random variables ξ (Karhunen-Loève expansion) → PDE with additional dimensions: space, time + parameter space Bettina Schieche | SIAM UQ12 | 5/17

Slide 7

Slide 7 text

Overview Setting: PDEs with Random Parameters Adaptive Stochastic Collocation Method Adjoint Error Estimation Bettina Schieche | SIAM UQ12 | 6/17

Slide 8

Slide 8 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid Bettina Schieche | SIAM UQ12 | 7/17

Slide 9

Slide 9 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P Bettina Schieche | SIAM UQ12 | 7/17

Slide 10

Slide 10 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions Bettina Schieche | SIAM UQ12 | 7/17

Slide 11

Slide 11 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics Bettina Schieche | SIAM UQ12 | 7/17

Slide 12

Slide 12 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche | SIAM UQ12 | 7/17

Slide 13

Slide 13 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche | SIAM UQ12 | 7/17

Slide 14

Slide 14 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche | SIAM UQ12 | 7/17

Slide 15

Slide 15 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Stopping criterion: change < TOL Bettina Schieche | SIAM UQ12 | 7/17

Slide 16

Slide 16 text

Stochastic Collocation in a Nutshell DETERMINISTIC PDE-SOLVER CHOOSE COLLOCATION POINTS (SPARSE GRIDS) INTERPOLATE and CALCULATE STATISTICS (QUADRATURE) ADAPTIVITY / ERROR ESTIMATION Bettina Schieche | SIAM UQ12 | 8/17

Slide 17

Slide 17 text

Stationary Problem: Setting A(u, ξ) = −∇ · (a(x, ξ)∇u) = f 9 uniformly distributed random variables Bettina Schieche | SIAM UQ12 | 9/17

Slide 18

Slide 18 text

Stationary Problem: Setting A(u, ξ) = −∇ · (a(x, ξ)∇u) = f 9 uniformly distributed random variables Quantity of interest: Q(u) = E[u] Bettina Schieche | SIAM UQ12 | 9/17

Slide 19

Slide 19 text

Stationary Problem: Setting A(u, ξ) = −∇ · (a(x, ξ)∇u) = f 9 uniformly distributed random variables Quantity of interest: Q(u) = E[u] Stochastic collocation → uhξ Bettina Schieche | SIAM UQ12 | 9/17

Slide 20

Slide 20 text

Stationary Problem: Setting A(u, ξ) = −∇ · (a(x, ξ)∇u) = f 9 uniformly distributed random variables Quantity of interest: Q(u) = E[u] Stochastic collocation → uhξ Aim: Q(u) − Q(uhξ ) ! < TOL = 10−3 Bettina Schieche | SIAM UQ12 | 9/17

Slide 21

Slide 21 text

Stationary Problem: Results 0 5 10 15 10−4 10−3 10−2 10−1 P = 199 P = 59 Iterations Error indicator exact ⇒ Much more collocation points than necessary → TOL Bettina Schieche | SIAM UQ12 | 10/17

Slide 22

Slide 22 text

Overview Setting: PDEs with Random Parameters Adaptive Stochastic Collocation Method Adjoint Error Estimation Bettina Schieche | SIAM UQ12 | 11/17

Slide 23

Slide 23 text

Stochastic Adjoint Error Estimation Error: Q(u) − Q(uhξ ) = ? Bettina Schieche | SIAM UQ12 | 12/17

Slide 24

Slide 24 text

Stochastic Adjoint Error Estimation Error: Q(u) − Q(uhξ ) = ? Solve additional stochastic equation = adjoint problem A(u, ξ) = f ↔ A∗(φ, ξ) = g Bettina Schieche | SIAM UQ12 | 12/17

Slide 25

Slide 25 text

Stochastic Adjoint Error Estimation Error: Q(u) − Q(uhξ ) = ? Solve additional stochastic equation = adjoint problem A(u, ξ) = f ↔ A∗(φ, ξ) = g Residual: Res(uhξ ) = f − A(uhξ ) Bettina Schieche | SIAM UQ12 | 12/17

Slide 26

Slide 26 text

Stochastic Adjoint Error Estimation Error: Q(u) − Q(uhξ ) = ? Solve additional stochastic equation = adjoint problem A(u, ξ) = f ↔ A∗(φ, ξ) = g Residual: Res(uhξ ) = f − A(uhξ ) Error estimate: Q(u) − Q(uhξ ) = E[φRes(uhξ )] Bettina Schieche | SIAM UQ12 | 12/17

Slide 27

Slide 27 text

Stationary Problem: Stochastic Adjoint Error Analysis Error splitting: Q(u) − Q(uhξ ) joint error = Q(u) − Q(uξ) stochastic error + Q(uξ) − Q(uhξ ) deterministic error Bettina Schieche | SIAM UQ12 | 13/17

Slide 28

Slide 28 text

Stationary Problem: Stochastic Adjoint Error Analysis Error splitting: Q(u) − Q(uhξ ) joint error = Q(u) − Q(uξ) stochastic error + Q(uξ) − Q(uhξ ) deterministic error 0 200 400 600 800 0 0.2 0.4 0.6 0.8 1 number of adjoint collocation points estimate / exact error deterministic error joint error stochastic error ⇒ Much effort to capture stochastic error ⇒ Few effort to capture determinitic error Bettina Schieche | SIAM UQ12 | 13/17

Slide 29

Slide 29 text

Stationary Problem: Stochastic Collocation with Full Adjoint Error Estimates 0 5 10 15 10−4 10−3 10−2 10−1 P = 199 P = 59 Iterations Error indicator exact full adjoint ⇒ Error estimates very accurate ⇒ Drawback: > 300 adjoint collocation points → TOL Bettina Schieche | SIAM UQ12 | 14/17

Slide 30

Slide 30 text

Idea: Order Reduction of Adjoint Problem 1. One iteration of stochastic collocation: A(ξ(j))Uj = F 2. Adjoint solutions in these collocation points: A∗(ξ(j))Φj = G 3. Snapshot matrix S = (Φ1, · · · , ΦP) 4. Singular value decomposition of S → reduced basis ϕ 5. Galerkin projection onto ϕ: A∗ R (ξ)ΦR(ξ) = GR, dim(A∗ R ) dim(A∗) (1) 6. Evaluation of (1) in many adjoint collocation points Bettina Schieche | SIAM UQ12 | 15/17

Slide 31

Slide 31 text

Stationary Problem: Stochastic Collocation with Reduced Adjoint Error Estimator 0 5 10 15 10−4 10−3 10−2 10−1 P = 199 P = 59 Iterations Error indicator exact full adjoint reduced adjoint ⇒ Reduced adjoints very close to full adjoints → TOL Bettina Schieche | SIAM UQ12 | 16/17

Slide 32

Slide 32 text

Conclusion & Outlook Stochastic collocation results in a set of deterministic equations. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. indicator full adjoint reduced adjoint 0 100 200 300 400 500 Sum of Full Collocation Points Bettina Schieche | SIAM UQ12 | 17/17

Slide 33

Slide 33 text

Conclusion & Outlook Stochastic collocation results in a set of deterministic equations. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. indicator full adjoint reduced adjoint 0 100 200 300 400 500 Sum of Full Collocation Points ⇒ Extension to unsteady problems ⇒ Order reduction of the primal problem Bettina Schieche | SIAM UQ12 | 17/17

Slide 34

Slide 34 text

Conclusion & Outlook Stochastic collocation results in a set of deterministic equations. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. indicator full adjoint reduced adjoint 0 100 200 300 400 500 Sum of Full Collocation Points ⇒ Extension to unsteady problems ⇒ Order reduction of the primal problem The work is supported by the “Excellence Initiative“ of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt. Bettina Schieche | SIAM UQ12 | 17/17