Slide 1

Slide 1 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T T O KYO

Slide 2

Slide 2 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Deep Dive Yoshitaka Haribara Solutions Architect Amazon Web Services Japan K.K. A 2 - 0 8

Slide 3

Slide 3 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T 3bdU • P> f\ ( ) • Startup Solutions Architect @ AWS • $ x

Slide 4

Slide 4 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T • ' • Amazon SageMaker "+!)& %( • • *$ "+!)#

Slide 5

Slide 5 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Agenda • Amazon SageMaker • • Deep Dive

Slide 6

Slide 6 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Our mission at AWS

Slide 7

Slide 7 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Customer-focused 90%=- ML (" JG D Multi-framework 9:'#) ! Pace of innovation H+200=- ML 25 /79:8BF> Breadth and depth IA AI/ML (%*C0 Security and analytics KE$&QL4 28BS;.P?N Embedded R&D OJ,@ ( state-of-the-art 3< AWS 8R6M 1 (

Slide 8

Slide 8 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T AWS ( ) SyntheticGestalt

Slide 9

Slide 9 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T AI ML AMAZON SAGEMAKER A M A Z O N E C 2 C 5 I n s t a n c e s A M A Z O N E C 2 P 3 I n s t a n c e s F P G A s Frameworks AWS & A m a z o n R e k o g n i t i o n I m a g e / V i d e o A m a z o n P o l l y A m a z o n T r a n s c r i b e A m a z o n T r a n s l a t e A m a z o n C o m p r e h e n d A m a z o n L e x Chatbots A m a z o n F o r e c a s t Forecasting A m a z o n T e x t r a c t A m a z o n P e r s o n a l i z e Recommendations Vision Speech Language E l a s t i c I n f e r e n c e Infrastructure Interfaces

Slide 10

Slide 10 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Slide 11

Slide 11 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker

Slide 12

Slide 12 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T 07)=(96:(9 1;!#" Amazon SageMaker !# # !# 53 2/+' $453 " (9 ,.-/ ML %<*8& 1 2 3 $453 +'#

Slide 13

Slide 13 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T 07)=(96:(9 1;!#" !# 53 2/+' $453 " (9 ,.-/ ML %<*8& 1 2 3 $453 +'# Amazon SageMaker Ground Truth !# # Amazon SageMaker

Slide 14

Slide 14 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T @J3W2OIP2O!%BS&(' &( FD C?:1 )EFD ' 2O <>=? ML %$ /U4N0 1 2 3 )EFD :1$( Amazon SageMaker Ground Truth AWS Marketplace for Machine Learning &( # "( • k-means #$( • Factorization Machines (& () • DeepAR (,KR7Q) • BlazingText (Word2Vec) • XGBoost • ;T+L9.8* • Seq2Seq • LDA / Neural Topic Modelling (!%) • 56++V • AG2OH (-M / +L) Amazon SageMaker

Slide 15

Slide 15 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T 07)=(96:(9 1;!#" !# 53 2/+' $453 " (9 ,.-/ ML %<*8& 1 2 3 $453 +'# Amazon EC2 P3 Instances Amazon SageMaker RL Amazon SageMaker Ground Truth AWS Marketplace for Machine Learning !# # Amazon SageMaker

Slide 16

Slide 16 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T !# # 07)=(96:(9 1;!#" !# 53 2/+' $453 " (9 ,.-/ ML %<*8& 1 2 3 $453 +'# Amazon EC2 P3 Instances Amazon SageMaker RL Amazon SageMaker Ground Truth AWS Marketplace for Machine Learning Amazon SageMaker

Slide 17

Slide 17 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T !# # 07)=(96:(9 1;!#" !# 53 2/+' $453 " (9 ,.-/ ML %<*8& 1 2 3 $453 +'# Amazon EC2 P3 Instances Amazon SageMaker RL Amazon SageMaker Ground Truth AWS Marketplace for Machine Learning Amazon SageMaker Neo Amazon SageMaker

Slide 18

Slide 18 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T !# # 07)=(96:(9 1;!#" !# 53 2/+' $453 " (9 ,.-/ ML %<*8& 1 2 3 $453 +'# Amazon EC2 P3 Instances Amazon SageMaker RL Amazon SageMaker Ground Truth Amazon Elastic Inference AWS Marketplace for Machine Learning Amazon SageMaker Neo Amazon SageMaker

Slide 19

Slide 19 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Slide 20

Slide 20 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T D M • ( 3 ( )( ( 3 3 3 3 • 3, A K

Slide 21

Slide 21 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. SageMaker Python SDK import sagemaker

Slide 22

Slide 22 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. SageMaker Python SDK import sagemaker from sagemaker.mxnet import MXNet # Estimator estimator = MXNet("train.py", # role=sagemaker.get_execution_role(), train_instance_count=1, train_instance_type="ml.p3.2xlarge", framework_version="1.4.0")

Slide 23

Slide 23 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. SageMaker Python SDK import sagemaker from sagemaker.mxnet import MXNet # Estimator estimator = MXNet("train.py", # role=sagemaker.get_execution_role(), train_instance_count=1, train_instance_type="ml.p3.2xlarge", framework_version="1.4.0") estimator.fit("s3://mybucket/data/train") # fit

Slide 24

Slide 24 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. SageMaker Python SDK import sagemaker from sagemaker.mxnet import MXNet # #$ Estimator estimator = MXNet("train.py", # ! role=sagemaker.get_execution_role(), train_instance_count=1, train_instance_type="ml.p3.2xlarge", framework_version="1.4.0") estimator.fit("s3://mybucket/data/train") # fit predictor = estimator.deploy(initial_instance_count=1, instance_type="ml.m4.xlarge") # deploy "

Slide 25

Slide 25 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T CUDA, cuDNN train.py Deep Learning Framework

Slide 26

Slide 26 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. (Script Mode) train.py import argparse if __name__ == '__main__’: parser = argparse.ArgumentParser() # hyperparameters parser.add_argument('--epochs', type=int, default=10) # input data and model directories parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN']) parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST']) parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR']) args, _ = parser.parse_known_args() /opt/ml/input/data/train /opt/ml/input/data/test /opt/ml/model

Slide 27

Slide 27 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. (Script Mode) train.py import argparse if __name__ == '__main__’: parser = argparse.ArgumentParser() # hyperparameters parser.add_argument('--epochs', type=int, default=10) # input data and model directories parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN']) parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST']) parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR']) args, _ = parser.parse_known_args() /opt/ml/input/data/train /opt/ml/input/data/test /opt/ml/model

Slide 28

Slide 28 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Jupyter Notebook/Lab Amazon S3 The Jupyter Trademark is registered with the U.S. Patent & Trademark Office.

Slide 29

Slide 29 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Jupyter Notebook/Lab Amazon S3 The Jupyter Trademark is registered with the U.S. Patent & Trademark Office.

Slide 30

Slide 30 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Jupyter Notebook/Lab Amazon S3 The Jupyter Trademark is registered with the U.S. Patent & Trademark Office. Amazon Elastic Container Registry (ECR)

Slide 31

Slide 31 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Jupyter Notebook/Lab Amazon S3 Amazon EC2 P3 Instances Amazon ECR The Jupyter Trademark is registered with the U.S. Patent & Trademark Office. /opt/ml/input/data/train /opt/ml/input/data/test /opt/ml/model

Slide 32

Slide 32 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Amazon EC2 P3 Instances Jupyter Notebook/Lab Amazon S3 The Jupyter Trademark is registered with the U.S. Patent & Trademark Office.

Slide 33

Slide 33 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Amazon EC2 P3 Instances Jupyter Notebook/Lab Amazon S3 The Jupyter Trademark is registered with the U.S. Patent & Trademark Office.

Slide 34

Slide 34 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Amazon EC2 P3 Instances Jupyter Notebook/Lab Endpoint/ Batch transform Amazon S3 Amazon ECR The Jupyter Trademark is registered with the U.S. Patent & Trademark Office.

Slide 35

Slide 35 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Amazon EC2 P3 Instances Endpoint/ Batch transform Amazon S3 Amazon API Gateway AWS Lambda User The Jupyter Trademark is registered with the U.S. Patent & Trademark Office.

Slide 36

Slide 36 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Slide 37

Slide 37 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T 0./ "# $- ! , )*( +%&'

Slide 38

Slide 38 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T mf rip a • W c H a F a L h • - , - • mf WL l • S cWW neip • A h h h A o h • / - ,

Slide 39

Slide 39 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T AWS Step Functions • JSON L A • A • CloudWatch Event Start End Train Deploy Fetch data AWS Lambda Amazon SageMaker AWS Lambda (Amazon SageMaker) Amazon CloudWatch Events (Schedule / event trigger)

Slide 40

Slide 40 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T AWS Step Functions workflow Test data Train data Data Scientists/ Developers Git webhook docker push AWS Glue Amazon S3 (data) Amazon SageMaker Training Job / Batch Transform AWS CodeCommit or 3rd party Git repository Amazon S3 (raw data) Amazon Elastic Container Registry (ECR) AWS CodeBuild Endpoint https://aws.amazon.com/blogs/machine-learning/automated-and-continuous-deployment-of-amazon-sagemaker-models-with-aws-step-functions/ AWS Lambda SageMaker Endpoint deploy Amazon S3 (trained model) git push

Slide 41

Slide 41 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T AWS Step Functions workflow Test data Train data Data Scientists/ Developers Git webhook docker push AWS Glue Amazon S3 (data) Amazon SageMaker Training Job / Batch Transform AWS CodeCommit or 3rd party Git repository Amazon S3 (raw data) Amazon Elastic Container Registry (ECR) AWS CodeBuild Endpoint https://aws.amazon.com/blogs/machine-learning/automated-and-continuous-deployment-of-amazon-sagemaker-models-with-aws-step-functions/ AWS Lambda SageMaker Endpoint deploy Amazon S3 (trained model) git push

Slide 42

Slide 42 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T AWS Step Functions workflow Test data Train data Data Scientists/ Developers Git webhook docker push AWS Glue Amazon S3 (data) Amazon SageMaker Training Job / Batch Transform AWS CodeCommit or 3rd party Git repository Amazon S3 (raw data) AWS CodeBuild Endpoint https://aws.amazon.com/blogs/machine-learning/automated-and-continuous-deployment-of-amazon-sagemaker-models-with-aws-step-functions/ AWS Lambda SageMaker Endpoint deploy Amazon S3 (trained model) git push Amazon Elastic Container Registry (ECR)

Slide 43

Slide 43 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T AWS Step Functions workflow Test data Train data Data Scientists/ Developers Git webhook docker push AWS Glue Amazon S3 (data) Amazon SageMaker Training Job / Batch Transform AWS CodeCommit or 3rd party Git repository Amazon S3 (raw data) Amazon Elastic Container Registry (ECR) AWS CodeBuild Endpoint https://aws.amazon.com/blogs/machine-learning/automated-and-continuous-deployment-of-amazon-sagemaker-models-with-aws-step-functions/ AWS Lambda SageMaker Endpoint deploy Amazon S3 (trained model) git push

Slide 44

Slide 44 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Apache Airflow • ) 2 a DPM S CMR • 2 + ( D A • + G E Raw data Cleaned data Train data Test data Amazon SageMaker Training / HPO Model artifact Amazon SageMaker Batch transform Airflow DAG Filter long-tailed data sparse data format → RecordIO protobuf Analyze model performance based on test data Operator PythonOperator PythonOperator SageMakerTrainOperator/ SageMakerTransformOperator PythonOperator SageMakerTuningOperator Blog: https://aws.amazon.com/jp/blogs/news/build-end-to-end-machine-learning-workflows-with-amazon-sagemaker-and-apache-airflow/ Prediction results

Slide 45

Slide 45 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T ( • ( 3 ) • • • ( • • I S( • ( • U • • • ( S( • S • • R • S( • ( • S (

Slide 46

Slide 46 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T :;#( • ; 84@ • 7?>."%>0/ • +52 ' &*A1=3 -),$!%9<6

Slide 47

Slide 47 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Slide 48

Slide 48 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Ground Truth • 7 o • il7 b 4 • 0 c 7 a • % ) (% n d 0 e n

Slide 49

Slide 49 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T +

Slide 50

Slide 50 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T 1( $ *0) %' " - ! *0 #+ ! ,/( . "& ! !#+! !

Slide 51

Slide 51 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T )23 !1 $% &0 # /" ,-+ .'(*

Slide 52

Slide 52 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Slide 53

Slide 53 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T () 90% 10%

Slide 54

Slide 54 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T #! REST API &% "$

Slide 55

Slide 55 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Endpoint Estimator.deploy

Slide 56

Slide 56 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Model aws sagemaker create-model --model-name model1 --primary-container ‘{“Image”: “123.dkr.ecr.amazonaws.com/algo”, “ModelDataUrl”: “s3://bkt/model1.tar.gz”}’ --execution-role-arn arn:aws:iam::123:role/me

Slide 57

Slide 57 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Model Endpoint configuration aws sagemaker create-model --model-name model1 --primary-container ‘{“Image”: “123.dkr.ecr.amazonaws.com/algo”, “ModelDataUrl”: “s3://bkt/model1.tar.gz”}’ --execution-role-arn arn:aws:iam::123:role/me aws sagemaker create-endpoint-config --endpoint-config-name model1-config --production-variants ‘{“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 1, “ModelName”: “model1”, “VariantName”: “AllTraffic”}’

Slide 58

Slide 58 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Model Endpoint configuration Endpoint aws sagemaker create-model --model-name model1 --primary-container ‘{“Image”: “123.dkr.ecr.amazonaws.com/algo”, “ModelDataUrl”: “s3://bkt/model1.tar.gz”}’ --execution-role-arn arn:aws:iam::123:role/me aws sagemaker create-endpoint-config --endpoint-config-name model1-config --production-variants ‘{“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 1, “ModelName”: “model1”, “VariantName”: “AllTraffic”}’ aws sagemaker create-endpoint --endpoint-name my-endpoint --endpoint-config-name model1-config

Slide 59

Slide 59 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T ) / (

Slide 60

Slide 60 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Model v2 aws sagemaker create-model --model-name model2 --primary-container ‘{“Image”: “123.dkr.ecr.amazonaws.com/algo”, “ModelDataUrl”: “s3://bkt/model2.tar.gz”}’ --execution-role-arn arn:aws:iam::123:role/me

Slide 61

Slide 61 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Model v2 endpoint configuration aws sagemaker create-model --model-name model2 --primary-container ‘{“Image”: “123.dkr.ecr.amazonaws.com/algo”, “ModelDataUrl”: “s3://bkt/model2.tar.gz”}’ --execution-role-arn arn:aws:iam::123:role/me aws sagemaker create-endpoint-config --endpoint-config-name model2-config --production-variants ‘{“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 1, “ModelName”: “model2”, “VariantName”: “AllTraffic”}’

Slide 62

Slide 62 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Model v2 endpoint configuration endpoint aws sagemaker create-model --model-name model2 --primary-container ‘{“Image”: “123.dkr.ecr.amazonaws.com/algo”, “ModelDataUrl”: “s3://bkt/model2.tar.gz”} --execution-role-arn arn:aws:iam::123:role/me aws sagemaker create-endpoint-config --endpoint-config-name model2-config --production-variants ‘{“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 1, “ModelName”: “model2”, “VariantName”: “AllTraffic”}’ aws sagemaker update-endpoint --endpoint-name my-endpoint --endpoint-config-name model2-config

Slide 63

Slide 63 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T 0( "! 1' &/% +2 ), $ -.#*

Slide 64

Slide 64 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T endpoint configuration aws sagemaker create-endpoint-config --endpoint-config-name both-models-config --production-variants ‘[{“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 95, “ModelName”: “model1”, “VariantName”: “model1-traffic”}, {“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 5, “ModelName”: “model2”, “VariantName”: “model2-traffic”}]’

Slide 65

Slide 65 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T endpoint configuration endpoint aws sagemaker create-endpoint-config --endpoint-config-name both-models-config --production-variants ‘[{“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 95, “ModelName”: “model1”, “VariantName”: “model1-traffic”}, {“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 5, “ModelName”: “model2”, “VariantName”: “model2-traffic”}]’ aws sagemaker update-endpoint --endpoint-name my-endpoint --endpoint-config-name both-models-config

Slide 66

Slide 66 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T endpoint configuration endpoint aws sagemaker create-endpoint-config --endpoint-config-name both-models-config --production-variants ‘[{“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 95, “ModelName”: “model1”, “VariantName”: “model1-traffic”}, {“InitialInstanceCount”: 2, “InstanceType”: “ml.m4.xlarge”, “InitialVariantWeight”: 5, “ModelName”: “model2”, “VariantName”: “model2-traffic”}]’ aws sagemaker update-endpoint --endpoint-name my-endpoint --endpoint-config-name both-models-config aws sagemaker update-endpoint-weights-and-capacities --endpoint-name my-endpoint --desired-weights-and-capacities ‘{“VariantName”: ”model1”, “DesiredWeight”: 5}’

Slide 67

Slide 67 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T CPU / GPU / Amazon CloudWatch

Slide 68

Slide 68 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T SageMaker • Min / max • Target • invocations per instance • Cool down time

Slide 69

Slide 69 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T

Slide 70

Slide 70 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T

Slide 71

Slide 71 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T CPU automatic scaling policy aws application-autoscaling register-scalable-target --service-namespace sagemaker --resource-id endpoint/my-endpoint/variant/model2 --scalable-dimension sagemaker:variant:DesiredInstanceCount --min-capacity 2 --max-capacity 5

Slide 72

Slide 72 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T CPU automatic scaling policy aws application-autoscaling register-scalable-target --service-namespace sagemaker --resource-id endpoint/my-endpoint/variant/model2 --scalable-dimension sagemaker:variant:DesiredInstanceCount --min-capacity 2 --max-capacity 5 aws application-autoscaling put-scaling-policy --policy-name model2-scaling --service-namespace sagemaker --resource-id endpoint/my-endpoint/variant/model2 --scalable-dimension sagemaker:variant:DesiredInstanceCount --policy-type TargetTrackingScaling --target-tracking-scaling-policy-configuration ‘{"TargetValue": 50, "CustomizedMetricSpecification": {"MetricName": "CPUUtilization", "Namespace": "/aws/sagemaker/Endpoints", "Dimensions": [{"Name": "EndpointName", "Value": "my-endpoint"}, {"Name": "VariantName","Value": ”model2"}], "Statistic": "Average", "Unit": "Percent”}}’

Slide 73

Slide 73 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Slide 74

Slide 74 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T

Slide 75

Slide 75 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T +&- "./ 1. Batch Transform Job • %$ !'* 2. Amazon Elastic Inference • +& %$ 3. Amazon SageMaker Neo • +& ,(#)#

Slide 76

Slide 76 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T

Slide 77

Slide 77 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon S3

Slide 78

Slide 78 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T 0 50 100 150 200 1 2 4 6 8 10

Slide 79

Slide 79 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon Elastic Inference

Slide 80

Slide 80 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Slide 81

Slide 81 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Neo K E Y F E A T U R E S Neo-AI (Apache license 2.0) DL 1/10 https://github.com/neo-ai/

Slide 82

Slide 82 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Amazon SageMaker Neo

Slide 83

Slide 83 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Parse Model Optimize Tensors Generate Code Optimize Graph TensorFlow, MXNet, PyTorch, XGBoost ")C %05 ML " (NN) & %$ @B1?+: 8D 6E/ (-% shape %$4* .;>!,2 %= '#"$ =97A<3 Neo (TVM / treelite) Pruning Operator fusion Nested loop tiling Vectorization / Tensorization Data layout transform

Slide 84

Slide 84 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T WP • D , T GcrzG • FmyGo dFlszaT • , , P e kn • GcrzG ul P T • , , A B T GcrzG G • D , A A S pkGf • T T fnwbS M • w gatI ihIE K J IS MN D D ,

Slide 85

Slide 85 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T Related breakouts | l k hu WML G 32 Ot dg a 32 2 C : A 5 : 5 ry e ,4D 4E 248 04 mik SW cens 2D :5. A 4 -1 ,4D 4E 248 04 ho z O c k 32 2 C : A 5 : 5 2C : 04 D4 ,4D

Slide 86

Slide 86 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T ! S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Yoshitaka Haribara [email protected] @_hariby

Slide 87

Slide 87 text

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. S U M M I T References • ML@Loft [Blog#1] • Amazon SageMaker [Web#1, Blog#2, #3, #4, #5] • AWS Black Belt Online Seminar • Basic [Movie, Slides] • Advanced [Movie, Slides] • AWS : Keras [Blog], Apache Airflow [Blog], Kubeflow [Blog], • HPO: SageMaker default [Blog], Optuna [Blog] • GPU [Blog] • SageMaker Containers [GitHub] • Jupyter /IDE [SageMaker Python SDK] API