Slide 1

Slide 1 text

Jennifer Bryan 
 RStudio, University of British Columbia  @JennyBryan  @jennybc Row-oriented workflows in +

Slide 2

Slide 2 text

rstd.io/row-work GitHub repo has all code. Link to slides on SpeakerDeck. Get the .R files to play along. Or follow via rendered .md.

Slide 3

Slide 3 text

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit 
 http://creativecommons.org/licenses/by-sa/4.0/

Slide 4

Slide 4 text

download materials: rstd.io/row-work I assume you know or want to know: the tidyverse packages the pipe operator, %>% list = core data structure "apply" or "map" functions, e.g. base::lapply() and purrr::map()

Slide 5

Slide 5 text

download materials: rstd.io/row-work tidyverse.org

Slide 6

Slide 6 text

download materials: rstd.io/row-work r4ds.had.co.nz

Slide 7

Slide 7 text

download materials: rstd.io/row-work https://twitter.com/daattali/status/761058049859518464 https://twitter.com/daattali/status/761233607822221312

Slide 8

Slide 8 text

download materials: rstd.io/row-work > str(i_want) List of 2 $ :List of 2 ..$ x: num 1 ..$ y: chr "one" $ :List of 2 ..$ x: num 2 ..$ y: chr "two" > i_have # A tibble: 2 x 2 x y 1 1. one 2 2. two How to do this?

Slide 9

Slide 9 text

download materials: rstd.io/row-work https://rpubs.com/wch/200398 Winston compiled, I updated.

Slide 10

Slide 10 text

download materials: rstd.io/row-work df <- SOME DATA FRAME out <- vector(mode = "list", length = nrow(df)) for (i in seq_along(out)) { out[[i]] <- as.list(df[i, , drop = FALSE]) } out for loop

Slide 11

Slide 11 text

download materials: rstd.io/row-work df <- SOME DATA FRAME df <- split(df, seq_len(nrow(df))) lapply(df, function(row) as.list(row)) split by row then lapply df <- SOME DATA FRAME lapply( seq_len(nrow(df)), function(i) as.list(df[i, , drop = FALSE]) ) lapply over row numbers

Slide 12

Slide 12 text

download materials: rstd.io/row-work df <- SOME DATA FRAME transpose(df) df <- SOME DATA FRAME pmap(df, list) purrr::pmap() purrr::transpose()* * Happens to be exactly what's needed in this specific example.

Slide 13

Slide 13 text

download materials: rstd.io/row-work Why so many ways to do THING for each row? Because there is no way.

Slide 14

Slide 14 text

download materials: rstd.io/row-work Why so many ways to do THING for each row? Columns are very special in R. This is fantastic for data analysis. Tradeoff: row-oriented work is harder.

Slide 15

Slide 15 text

download materials: rstd.io/row-work How to choose? Speed and ease of: • Writing the code • Reading the code • Executing the code

Slide 16

Slide 16 text

download materials: rstd.io/row-work Of course someone has to write loops It doesn't have to be you

Slide 17

Slide 17 text

download materials: rstd.io/row-work Pro tip #1 Use vectorized functions. Let other people write loop-y code for you.

Slide 18

Slide 18 text

download materials: rstd.io/row-work paste() example ex03_row-wise-iteration-are-you-sure.R

Slide 19

Slide 19 text

download materials: rstd.io/row-work Pro tip #2 Use purrr::map()* and friends. Let other people write loop-y code for you. * Like base::lapply(), but anchors a large, coherent family of map functions.

Slide 20

Slide 20 text

download materials: rstd.io/row-work map(.x, .f, ...) purrr::

Slide 21

Slide 21 text

download materials: rstd.io/row-work map(.x, .f, ...) for every element of .x apply .f

Slide 22

Slide 22 text

.x = minis

Slide 23

Slide 23 text

map(minis, antennate)

Slide 24

Slide 24 text

download materials: rstd.io/row-work map(.x, .f, ...) .x <- SOME VECTOR OR LIST out <- vector(mode = "list", length = length(.x)) for (i in seq_along(out)) { out[[i]] <- .f(.x[[i]]) } out

Slide 25

Slide 25 text

download materials: rstd.io/row-work map(.x, .f, ...) purrr::map() implements a for loop! But with less code clutter.

Slide 26

Slide 26 text

download materials: rstd.io/row-work purrr::map() example ex04_map-example.R

Slide 27

Slide 27 text

download materials: rstd.io/row-work No, I really do need to do THING for each row.

Slide 28

Slide 28 text

download materials: rstd.io/row-work > str(i_want) List of 2 $ :List of 2 ..$ x: num 1 ..$ y: chr "one" $ :List of 2 ..$ x: num 2 ..$ y: chr "two" > i_have # A tibble: 2 x 2 x y 1 1. one 2 2. two How to do this?

Slide 29

Slide 29 text

download materials: rstd.io/row-work pmap(.l, .f, ...) for every tuple in.l apply .f

Slide 30

Slide 30 text

pmap(.l, embody)

Slide 31

Slide 31 text

pmap(.l, embody)

Slide 32

Slide 32 text

download materials: rstd.io/row-work pmap(.l, .f, ...) .l <- LIST OF LENGTH-N VECTORS out <- vector(mode = "list", length = N) for (i in seq_along(out)) { out[[i]] <- .f(.l[[1]][[i]], .l[[2]][[i]], ...) } out

Slide 33

Slide 33 text

download materials: rstd.io/row-work pmap(.l, .f, ...) .l <- LIST OF LENGTH-N VECTORS out <- vector(mode = "list", length = N) for (i in seq_along(out)) { out[[i]] <- .f(.l[[1]][[i]], .l[[2]][[i]], ...) } out A data frame works! row i

Slide 34

Slide 34 text

download materials: rstd.io/row-work pmap(.l, .f, ...) .l <- LIST OF LENGTH-N VECTORS out <- vector(mode = "list", length = N) for (i in seq_along(out)) { out[[i]] <- .f(.l[[1]][[i]], .l[[2]][[i]], ...) } out pmap() is a for loop! it applies .f to each row

Slide 35

Slide 35 text

download materials: rstd.io/row-work purrr::pmap() example ex06_runif-via-pmap.R

Slide 36

Slide 36 text

download materials: rstd.io/row-work How to choose? Speed and ease of: • Writing the code • Reading the code • Executing the code

Slide 37

Slide 37 text

download materials: rstd.io/row-work map() map_lgl(), map_int(), map_dbl(), map_chr() map_if(), map_at() map_dfr(), map_dfc() map2() map2_lgl(), map2_int(), map2_dbl(), map2_chr() map2_dfr(), map2_dfc() pmap() pmap_lgl(), pmap_int(), pmap_dbl(), pmap_chr() pmap_dfr(), pmap_dfc() imap() imap_lgl(), imap_chr(), imap_int(), imap_dbl() imap_dfr(), imap_dfc()

Slide 38

Slide 38 text

download materials: rstd.io/row-work map() map_lgl(), map_int(), map_dbl(), map_chr() map_if(), map_at() map_dfr(), map_dfc() map2() map2_lgl(), map2_int(), map2_dbl(), map2_chr() map2_dfr(), map2_dfc() pmap() pmap_lgl(), pmap_int(), pmap_dbl(), pmap_chr() pmap_dfr(), pmap_dfc() imap() imap_lgl(), imap_chr(), imap_int(), imap_dbl() imap_dfr(), imap_dfc() purrr's map functions have a common interface ❄ ✗ learn it once, use it everywhere

Slide 39

Slide 39 text

download materials: rstd.io/row-work df <- SOME DATA FRAME out <- vector(mode = "list", length = nrow(df)) for (i in seq_along(out)) { out[[i]] <- as.list(df[i, , drop = FALSE]) } out for loop df <- SOME DATA FRAME df <- split(df, seq_len(nrow(df))) lapply(df, function(row) as.list(row)) split by row then lapply df <- SOME DATA FRAME lapply( seq_len(nrow(df)), function(i) as.list(df[i, , drop = FALSE]) ) lapply over row numbers df <- SOME DATA FRAME pmap(df, list) purrr::pmap() df <- SOME DATA FRAME transpose(df) purrr::transpose()

Slide 40

Slide 40 text

download materials: rstd.io/row-work

Slide 41

Slide 41 text

download materials: rstd.io/row-work code for that study: iterate-over-rows.R

Slide 42

Slide 42 text

download materials: rstd.io/row-work purrr::pmap(df, .f) for each row of df do this

Slide 43

Slide 43 text

download materials: rstd.io/row-work What if I need to work on groups of rows?

Slide 44

Slide 44 text

download materials: rstd.io/row-work Pro tip #3 Use dplyr::group_by() + summarize(). Let other people write loop-y code for you.

Slide 45

Slide 45 text

download materials: rstd.io/row-work group_by() + summarize() example ex07_group-by-summarise.R

Slide 46

Slide 46 text

download materials: rstd.io/row-work No, I really must work on groups of rows.

Slide 47

Slide 47 text

download materials: rstd.io/row-work Use nesting to restate as "do THING for each row"

Slide 48

Slide 48 text

download materials: rstd.io/row-work Use nesting to restate as "do THING for each row" DONE * See everything up 'til now in this talk. *

Slide 49

Slide 49 text

download materials: rstd.io/row-work dplyr::group_by() + tidyr::nest() ex08_nesting-is-good.R

Slide 50

Slide 50 text

download materials: rstd.io/row-work embrace the data frame esp. the tibble = tidyverse data frame embrace lists embrace lists as variables in a tibble "list-columns", may come from nesting embrace purrr::map() & friends Tips for row-oriented workflows