Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
No content
Slide 2
Slide 2 text
No content
Slide 3
Slide 3 text
No content
Slide 4
Slide 4 text
Bottle delivery data Interval Response Time Throughput 10 3.1 22 20 1.2 41 30 7.9 32 … … …
Slide 5
Slide 5 text
Grab some data (using R) beer <- read.csv(url("http://staash.com/beer_operation s.csv")) response <- beer[,2] plot(response, type="S",ylab=”response”)
Slide 6
Slide 6 text
Bottle delivery response over time
Slide 7
Slide 7 text
Analysis > summary(response) Min. 1st Qu. Median Mean 3rd Qu. Max. 1.909 2.550 2.820 3.086 3.214 67.680 > quantile(response,c(0.95,0.99)) 95% 99% 4.149556 6.922115 > sd(response) 1.941328 > mean(response) + 2 * sd(response) 6.968416
Slide 8
Slide 8 text
chp(throughput,response,q=1.0) (See http://perfcap.blogspot.com/search?q=chp)
Slide 9
Slide 9 text
No content
Slide 10
Slide 10 text
No content
Slide 11
Slide 11 text
No content
Slide 12
Slide 12 text
No content
Slide 13
Slide 13 text
No content
Slide 14
Slide 14 text
No content
Slide 15
Slide 15 text
No content
Slide 16
Slide 16 text
No content
Slide 17
Slide 17 text
No content
Slide 18
Slide 18 text
Scalability plots generated using appdynamics.com
Slide 19
Slide 19 text
Well behaved Lock Contention Oscillating, thread shortage Looping autoscaled Bottlenecks
Slide 20
Slide 20 text
http://perfcap.blogspot.com/search?q=chp @adrianco