Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

Bottle delivery data Interval Response Time Throughput 10 3.1 22 20 1.2 41 30 7.9 32 … … …

Slide 5

Slide 5 text

Grab some data (using R) beer <- read.csv(url("http://staash.com/beer_operation s.csv")) response <- beer[,2] plot(response, type="S",ylab=”response”)

Slide 6

Slide 6 text

Bottle delivery response over time

Slide 7

Slide 7 text

Analysis > summary(response) Min. 1st Qu. Median Mean 3rd Qu. Max. 1.909 2.550 2.820 3.086 3.214 67.680 > quantile(response,c(0.95,0.99)) 95% 99% 4.149556 6.922115 > sd(response) 1.941328 > mean(response) + 2 * sd(response) 6.968416

Slide 8

Slide 8 text

chp(throughput,response,q=1.0) (See http://perfcap.blogspot.com/search?q=chp)

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

Scalability plots generated using appdynamics.com

Slide 19

Slide 19 text

Well behaved Lock Contention Oscillating, thread shortage Looping autoscaled Bottlenecks

Slide 20

Slide 20 text

http://perfcap.blogspot.com/search?q=chp @adrianco