Slide 1

Slide 1 text

©2022 Wantedly, Inc. ձࣾ๚໰ΞϓϦʮWantedly Visitʯͷ σʔλͰݟΔ૬ޓਪનγεςϜ [G33-5] DEIM2022 [G33]஌ࣝάϥϑɾΦϯτϩδ׆༻-ᶄʲٕज़ใࠂʳ 1.March.2022 - দଜ༏໵ʢ΢ΥϯςουϦʔגࣜձࣾʣ @yu-ya4

Slide 2

Slide 2 text

©2022 Wantedly, Inc. 1. ͸͡Ίʹ • ࣗݾ঺հɺձࣾͱϓϩμΫτͷ঺հ • ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ • ΞΧσϛΞʹ͓͚Δ׆ಈ 2. ૬ޓਪનγεςϜͱ͸ • ૬ޓਪનγεςϜͷ֓ཁɾಛ௃ • طଘख๏ͷ঺հ 3. ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ • Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • վྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 3

Slide 3 text

©2022 Wantedly, Inc. 1. ͸͡Ίʹ • ࣗݾ঺հɺձࣾͱϓϩμΫτͷ঺հ • ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ • ΞΧσϛΞʹ͓͚Δ׆ಈ 2. ૬ޓਪનγεςϜͱ͸ • ૬ޓਪનγεςϜͷ֓ཁɾಛ௃ • طଘख๏ͷ঺հ 3. ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ • Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • վྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 4

Slide 4 text

©2022 Wantedly, Inc. ✓ দଜ ༏໵ʢYuya Matsumuraʣ ✓ 2018೥3݄ ژ౎େֶେֶӃ৘ใֶݚڀՊ म࢜՝ఔमྃ ✓ ΢ΥϯςουϦʔגࣜձࣾ Recommendation νʔϜϦʔυ ✓ Wantedly Visit ʹ͓͚ΔਪનγεςϜͷ։ൃͳͲΛ୲౰ @yu-ya4 @yu__ya4 ࣗݾ঺հ

Slide 5

Slide 5 text

©2022 Wantedly, Inc. ձࣾ঺հ "γΰτͰίίϩΦυϧͻͱΛ;΍͢" "CREATE A WORLD WHERE WORK DRIVES PASSION"

Slide 6

Slide 6 text

©2022 Wantedly, Inc. ձࣾ๚໰ΞϓϦ Wantedly Visit

Slide 7

Slide 7 text

©2022 Wantedly, Inc. ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ

Slide 8

Slide 8 text

©2022 Wantedly, Inc. Ϣʔβ͝ͱʹ࠷దԽ͞Εͨίϯςϯπͷਪન Ϣʔβʹద੾ͳίϯςϯπΛఏڙͯ͠ ཧ૝ͷϚονϯάΛ࣮ݱ͢ΔͨΊͷ༷ʑͳਪનγεςϜ ࣗવݴޠॲཧ΍ػցֶशͳͲ༷ʑͳٕज़Λ׆༻

Slide 9

Slide 9 text

©2022 Wantedly, Inc. ϢʔβͷʮڵຯʯʹΑΔϚονϯά Ϣʔβ͕બ୒ͨ͠ʮڵຯʯʹجͮ͘ืूͱͷϚονϯά ʮ৬छʯͳͲʹΑΔϑΟϧλϦϯάͷΈͰ͸ݟ͚ͭΒΕͳ ͍ΑΓϢʔβͷᅂ޷ʹ߹ͬͨืूΛਪન͢Δ

Slide 10

Slide 10 text

©2022 Wantedly, Inc. ΞΧσϛΞʹ͓͚Δ׆ಈ

Slide 11

Slide 11 text

©2022 Wantedly, Inc. ࠃࡍֶձ΁ͷௌߨࢀՃ / ࿦จಡΈձΠϕϯτͷاըӡӦ

Slide 12

Slide 12 text

©2022 Wantedly, Inc. ֶձซઃίϯϖςΟγϣϯͰͷೖ৆ɾ࿦จ౤ߘɾൃද RecSys’20 WSDM’21 SIGIR’21

Slide 13

Slide 13 text

©2022 Wantedly, Inc. DEIM ΁ͷڠࢍ / ٕज़ใࠂ https://event.dbsj.org/deim2022/

Slide 14

Slide 14 text

©2022 Wantedly, Inc. 1. ͸͡Ίʹ • ࣗݾ঺հɺձࣾͱϓϩμΫτͷ঺հ • ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ • ΞΧσϛΞʹ͓͚Δ׆ಈ 2. ૬ޓਪનγεςϜͱ͸ • ૬ޓਪનγεςϜͷ֓ཁɾಛ௃ • طଘख๏ͷ঺հ 3. ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ • Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • վྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 15

Slide 15 text

©2022 Wantedly, Inc. User Item ैདྷͷҰൠతͳਪનγεςϜ ૬ޓਪનγεςϜ User(Female) User(Male) User(Job Seeker) User(Recruiter/Company) ex. Amazon, Netflix ex. Tinder, Pairs ex. Wantedly, LinkedIn ૬ޓਪનγεςϜʢReciprocal Recommender Systemsʣͱ͸ʁ ʮαʔϏε಺ͷϢʔβΛޓ͍ʹਪન͢ΔγεςϜʯ ਪન ਪન ਪન

Slide 16

Slide 16 text

©2022 Wantedly, Inc. ૬ޓਪનγεςϜʹ͓͚Δਪનͷ"੒ޭ" ͓ޓ͍ͷᅂ޷͕Ұகͯ͠ॳΊͯਪન͕"੒ޭ"ͨ͜͠ͱʹͳΔ User Item ैདྷͷҰൠతͳਪનγεςϜ ૬ޓਪનγεςϜ User User ߪೖ ⭕ ⭕ Like Nope User User Like Like

Slide 17

Slide 17 text

©2022 Wantedly, Inc. User A to User B Preference Score User B to User A Preference Score Reciproca l Preference Score Aggregatio n 1. γεςϜ಺ͷϢʔβ͸ A ͱ B ͷ̎ͭͷάϧʔϓʹ෼͔Ε͓ͯΓɺҟͳΔάϧʔϓͷϢʔβ͕ޓ͍ਪન͞ΕΔ ΋ͷͱ͢Δɻʢe.g. σʔςΟϯάαʔϏεʹ͓͚ΔஉঁɺٻਓαʔϏεʹ͓͚Δٻ৬ऀͱاۀʣ 2. ୯ํ޲ͷᅂ޷ͷେ͖͞Λද͢ Preference Score ΛɺA ͔Β B ΁ͷϢʔβٴͼ B ͔Β A ͷϢʔβͷͦΕͧΕ ʹ͍ͭͯܭࢉ 3. Aggregation Function Λར༻ͯ͠ɺ̎ͭͷ Preference Score Λ૊Έ߹Θͤͯ૒ํ޲ͷᅂ޷ͷେ͖͞Λද͢ Reciprocal Preference Score Λܭࢉ ૬ޓਪનγεςϜʹ͓͚Δᅂ޷ͷ༧ଌ

Slide 18

Slide 18 text

©2022 Wantedly, Inc. ✓ [RECON] (Pizzato 2010) ‣ ϢʔβͷϓϩϑΟʔϧ৘ใΛར༻ͨ͠ίϯςϯπϕʔεϑΟϧλϦϯάͰ Preference Score Λࢉग़ ‣ Aggregation Function ʹ͸ௐ࿨ฏۉΛར༻ ✓ [RCF] (Xia 2015 ) ‣ ߦಈཤྺʹجͮ͘ϝϞϦϕʔεͷϢʔβϕʔεڠௐϑΟϧλϦϯάʢk-ۙ๣ʣͰ Preference Score Λࢉग़ ✓ [LFRR](Neve 2019) ‣ ߦಈཤྺʹج͖ͮ࡞੒ͨ͠ User-User ߦྻʹ Matrix Factorization Λద༻ͯ͠ Preference Score Λࢉग़ ‣ Aggregation Function ʹ͍ͭͯɼௐ࿨ฏۉҎ֎ͷؔ਺ʹ͍ͭͯ΋ൺֱ࣮ݧ ✓ [ImRec](Neve 2020 ) ‣ ϢʔβͷϓϩϑΟʔϧը૾Λར༻ͨ͠ίϯςϯπϕʔεϑΟϧλϦϯάͰ Preference Score Λࢉग़ ૬ޓਪનγεςϜʹ͓͚Δᅂ޷ͷ༧ଌͷطଘख๏

Slide 19

Slide 19 text

©2022 Wantedly, Inc. 1. ͸͡Ίʹ • ࣗݾ঺հɺձࣾͱϓϩμΫτͷ঺հ • ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ • ΞΧσϛΞʹ͓͚Δ׆ಈ 2. ૬ޓਪનγεςϜͱ͸ • ૬ޓਪનγεςϜͷ֓ཁɾಛ௃ • طଘख๏ͷ঺հ 3. ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ • Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • վྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 20

Slide 20 text

©2022 Wantedly, Inc. • δϣϒϚονϯάαʔϏεʹ͓͚ΔਪનγεςϜͷॏཁੑ • ॏཁͳҰํͰݚڀ͕·ͩଟ͍Θ͚Ͱͳ͘ɺ͞ΒͳΔվળͷ༨஍ • Wantedly ʹे෼ͳσʔλ͕஝ੵ͞Ε͖ͯͨ Ϟνϕʔγϣϯ Why

Slide 21

Slide 21 text

©2022 Wantedly, Inc. Ϟνϕʔγϣϯ δϣϒϚονϯάαʔϏεʹ͓͚ΔਪનγεςϜͷॏཁੑ • ʮಇ͘ʯΛऔΓר͘؀ڥ͸೔ʑมԽɺෳࡶԽ • ಇ͖ํͷଟ༷Խʢe.g. ϦϞʔτϫʔΫɺ෭ۀɾϑϦʔϥϯεɺ৽ଔҰׅ࠾༻ͷഇࢭʣ • ৬छͷଟ༷Խʢe.g. σʔλαΠΤϯςΟετɾPdMʣ • ͦ΋ͦ΋ਓ͸ࣗ෼͕ຊ౰ʹ΍Γ͍ͨ͜ͱΛࣗ෼Ͱ෼͔͍ͬͯͳ͍ →ਪનγεςϜʹΑΔҙࢥܾఆͷิॿͷॏཁੑ͕ߴ·Δ

Slide 22

Slide 22 text

©2022 Wantedly, Inc. Ϟνϕʔγϣϯ ॏཁͳҰํͰݚڀ͕·ͩଟ͍Θ͚Ͱͳ͘ɺ͞ΒͳΔվળͷ༨஍ • ηϯγςΟϒͳྖҬͳͷͰσʔλ΍։ൃɾݚڀ੒ՌΛެ։͢Δ͜ͱ͕ࠔ೉ • ૬ޓਪનγεςϜͷطଘݚڀ΋σʔςΟϯάαʔϏεʹ͍ͭͯͷ΋ͷ͕ଟ͍ • طଘݚڀͷධՁ࣮ݧͰར༻͞ΕΔख๏͸·ͩ·ͩൃల్্ • ҰൠతͳਪનγεςϜʹͯ׆༻͞ΕΔख๏Λͦͷ··ྲྀ༻Ͱ͖Δ෦෼΋ • ૬ޓਪનγεςϜͳΒͰ͸ͷख๏΋͜Ε͔ΒͲΜͲΜग़ͯ͘ΔͰ͋Ζ͏

Slide 23

Slide 23 text

©2022 Wantedly, Inc. Ϟνϕʔγϣϯ Wantedly ʹे෼ͳσʔλ͕஝ੵ͞Ε͖ͯͨ • ొ࿥اۀϢʔβ3.2ສࣾҎ্ɺݸਓϢʔβ 330ສਓҎ্ • ΧδϡΞϧͳձࣾ๚໰ΞϓϦͰ͋Δ͔Βͦ͜ɺҰൠతͳస৬αʔϏεΑΓ΋େ ྔͷଟ༷ͳσʔλ͕ू·Δ • స৬׆ಈ࣌ʹʮબߟʯͷલʹͱΓ͋͑ͣͨ͘͞Μͷاۀͱ࿩͢ • ඇస৬࣌ʹ΋৘ใऩू໨తͳͲͰͱΓ͋͑ͣاۀͱ࿩ͯ͠ΈΔ • اۀͱ࿩͢ɺҎ֎ͷ໨తʢe.g. ϓϩϑΟʔϧɾϒϩάػೳɾϛʔτΞοϓػ ೳʣͰ΋ීஈ͔Βར༻͞ΕΔ

Slide 24

Slide 24 text

©2022 Wantedly, Inc. ࣮ݧ֓ཁ Wantedly Visit ʹ͓͚ΔϢʔβͱاۀͷ Matching Λ༧ଌ Company User Ԡื ϝοηʔδฦ৴ Company User εΧ΢τૹ৴ ϝοηʔδฦ৴ Company User Ԡื ӾཡͷΈ Company User εΧ΢τૹ৴ ӾཡͷΈ • Ϣʔβ͕Ԡื or اۀ͕εΧ΢τૹ৴ͨ͠ࡍʹ૬ख͕ϝοηʔδΛฦ৴͢Ε͹ Match (positive ) • Ԡื or εΧ΢τૹ৴Λ૬ख͕Ӿཡ্ͨ͠ͰϝοηʔδΛฦ৴͠ͳ͚Ε͹ Not Match (negative) Match Not Match How

Slide 25

Slide 25 text

©2022 Wantedly, Inc. ᅂ޷σʔλ/ධՁ஋ • Ϣʔβͷᅂ޷σʔλ • اۀ΁ͷԠื • اۀ͔ΒͷεΧ΢τૹ৴ʹର͢Δϝοηʔδฦ৴ • اۀͷᅂ޷σʔλ • Ϣʔβ΁ͷεΧ΢τૹ৴ • Ϣʔβ͔ΒͷԠืʹର͢Δϝοηʔδฦ৴ • ධՁ஋: Ϣʔβͱاۀͷ૊ʹରͯ͠༩͑ΒΕΔ (boolean ) • Ϣʔβ͕Ԡื or اۀ͕εΧ΢τૹ৴ͨ͠ࡍʹ૬ख͕ϝοηʔδΛฦ৴͢Ε͹ Match (positive ) • Ԡื or εΧ΢τૹ৴Λ૬ख͕Ӿཡ্ͨ͠ͰϝοηʔδΛฦ৴͠ͳ͚Ε͹ Not Match (negative ) • Ԡื or εΧ΢τૹ৴͕ൃੜ͕ͨ͠૬ख͕Ӿཡ͍ͯ͠ͳ͍΋ͷͷධՁ஋͸ෆ໌ʢະධՁʣ

Slide 26

Slide 26 text

©2022 Wantedly, Inc. ࣮ݧσʔλ • Wantedly Visit ʹ͓͚Δ 2019/11 - 2020/10 ͷ1೥෼ͷߦಈϩά • ৬छΛʮΤϯδχΞʯʹઃఆ͍ͯ͠ΔϢʔβ • ืू৬छΛʮΤϯδχΞʯʹઃఆ͍ͯ͠Δاۀʢืूʣ • ֘౰ظؒதʹ5݅Ҏ্ͷᅂ޷σʔλΛ༗͢ΔϢʔβͱاۀ • ֘౰ظؒதʹ100݅Ҏ্ͷᅂ޷σʔλΛ༗͢ΔϢʔβΛআ֎

Slide 27

Slide 27 text

©2022 Wantedly, Inc. ධՁ • ධՁ஋͕ෆ໌Ͱͳ͍Ϣʔβͱاۀͷ૊ͷ͏ͪ10%Λςετσʔλͱͯ͠ར༻ • ༧ଌ͞Εͨ Reciprocal Preference Score Λ AUC ͰධՁ

Slide 28

Slide 28 text

©2022 Wantedly, Inc. • Preference Score ༧ଌܭࢉͷͨΊͷΞϧΰϦζϜ • ߦಈཤྺʹجͮ͘ϝϞϦϕʔεͷϢʔβϕʔεڠௐϑΟϧλϦϯά [RCF] (Xia 2015 ) • ߦಈཤྺʹج͖ͮ࡞੒ͨ͠ User-User ߦྻʹ Matrix Factorization Λద༻ [LFRR](Neve 2019 ) • Aggregation Function • (Neve 2019)Ͱ࣮ݧ͞Ε͍ͯͨ4छྨ • Arithmetic Mean (AM ) • Geometric Mean (GM ) • Harmonic Mean (HM ) • Cross-Ratio Uninorm (CRU) طଘख๏ᶃ User A to User B Preference Score User B to User A Preference Score Reciproca l Preference Score Aggregatio n Function CRU:

Slide 29

Slide 29 text

©2022 Wantedly, Inc. ࣮ݧ݁Ռᶃ AUC AM GM HM CRU RCF 0.555 0.605 0.623 0.601 LFRR 0.549 0.559 0.566 0.513 RCF LFRR • طଘݚڀͱಉ༷ɺHM(ௐ࿨ฏۉ)͕΋ͬͱ΋ߴ͍ੑೳʹ • طଘݚڀͱҟͳΓɺLFRR ΑΓ΋ RCF ͷํ͕ߴ͍ੑೳʹ Aggregation Function Algorithm

Slide 30

Slide 30 text

©2022 Wantedly, Inc. طଘख๏ᶄ DEIM2021 ͷٕज़ใࠂ https://speakerdeck.com/yuya4/deim2021-rrs-wantedly-visit • ᅂ޷σʔλͷྔͱ࣭Λ্͛ΔͨΊʹෛͷᅂ޷σʔλΛ׆༻ʢNegʣ • Ԡื/εΧ΢τૹ৴͞ΕͯӾཡ͕ͨ͠ϝοηʔδฦ৴͠ͳ͔ͬͨͱ͍͏ෛͷᅂ޷σʔλ΋ར༻ • ਖ਼ͷᅂ޷σʔλΛར༻ͨ͠ਖ਼ͷ Preference Score ͷ༧ଌʹՃ͑ɺෛͷ Preference Score Λ༧ ଌɺ̎छྨͷ Preference Score Λ଍͠߹Θͤͯ Preference Score ΛಘΔ • ݸਓϢʔβͱاۀϢʔβͷ Preference Score ͷ܏޲ͷࠩΛิਖ਼ʢScalerʣ • ݸਓϢʔβͱاۀϢʔβͷ Preference Score ͦΕͧΕʹ MinMaxScaler Λద༻্ͨ͠Ͱ Aggregation Function Λར༻ͯ͠ Reciprocal Preference Score ΛಘΔ

Slide 31

Slide 31 text

©2022 Wantedly, Inc. ࣮ݧ݁Ռᶄ AUC AM GM HM CRU RCF 0.555 0.605 0.623 0.601 LFRR 0.549 0.559 0.566 0.513 LFRR + Scaler + Neg 0.651 0.692 0.713 0.597 LFRR + Scaler + Neg Aggregation Function Algorithm ఏҊख๏Ͱ͋Δ LFRR + Scaler + Neg ͱ HM ͷ૊Έ߹Θ͕ͤ࠷΋ߴ͍ੑೳʹ طଘख๏ᶃͱͷൺֱ

Slide 32

Slide 32 text

©2022 Wantedly, Inc. • Scaler ʹΑͬͯݸਓϢʔβͱاۀϢʔβͷશମͷࠩ͸ߟྀ͕ͨ͠ɺݸਓϢʔβ ͝ͱ/اۀϢʔβ͝ͱͷධՁ܏޲ͷҧ͍ΛߟྀͰ͖͍ͯͳ͍ • ৻ॏʹߟ͑ͯ਺݅ʹԠื͢Δ/ؾܰʹେྔʹԠื͢ΔݸਓϢʔβ • ͓ۚͱਓతϦιʔεͷ५୔ͳاۀ΄ͲεΧ΢τૹ৴ྔ͕େ͖͘ • ༗໊ɾਓؾͳاۀʹ͸Ԡื͸ूத͢Δ • ࿩୊ੑΛूΊΔૂ͍ͳͲͷઑͬͨืूΛग़ͨ͠اۀʹ΋Ԡื͸ूத • ෛͷᅂ޷σʔλͷ׆༻ʢNegʣ ʹΑ͕ͬͯࠩΑΓݦஶʹ • ݸਓϢʔβͷෛͷᅂ޷σʔλ͸εΧ΢τΛड͚औͬͨࡍʹ͔͠ൃੜ͠ͳ͍ • εΧ΢τΛड͚औΕΔͷ͸Ұ෦ͷݸਓϢʔβʔͰ͋ΓɺͦͷதͰภΓ΋ • ԠืΛड͚ͨΒϚον͍ͯ͠ͳ͘ͱ΋ͱΓ͋͑ͣฦ৴͢Δӡ༻ͷاۀ ՝୊

Slide 33

Slide 33 text

©2022 Wantedly, Inc. 1. Preference Score ͷ༧ଌʹ Biased Matrix Factorization Λద༻ʢBiasʣ 2. Reciprocal Preference Score ܭࢉ࣌ͷ Aggregation Function ʹϩδεςΟ ΫεճؼΛ࠾༻͠ɺϚονʹ࠷దͳॏΈΛֶशͯ֫͠ಘʢLR()ʣ ࣮ݧ͢Δख๏ ՝୊Ͱ͋ΔݸਓϢʔβ͝ͱ/اۀϢʔβ͝ͱͷධՁ܏޲ͷҧ͍Λߟྀ͢ΔͨΊ

Slide 34

Slide 34 text

©2022 Wantedly, Inc. • ैདྷͷਪનγεςϜͷݚڀͰߴ͍ੑೳΛތΔɺݸਓϢʔβʔ͝ͱاۀϢʔβʔ͝ ͱͷόΠΞε΋ֶश͢Δ Biased Matrix Factorization Λར༻ • MF : • Biased MF: ࣮ݧ͢Δख๏ᶃ Preference Score ͷ༧ଌʹ Biased Matrix Factorization Λద༻ʢBiasʣ min p,q ∑ u,i∈ℝ+ (rui − pT u qi )2 + λ ( ||pu ||2 + ||qi ||2 ) min p,q ∑ u,i∈ℝ+ (rui − (pT u qi + bui )2 + λ ( ||pu ||2 + ||qi ||2 + b2 u + b2 i ) bui = μ + bu + bi

Slide 35

Slide 35 text

©2022 Wantedly, Inc. • Reciprocal Preference Score ͷ༧ଌੑೳ͕େ͖͘޲্ • ҰํͰɺͦΕͧΕͷ Preference Score ͷ༧ଌੑೳ͸௿Լ • ͜Ε·Ͱ͸ภΓͷେ͖͍ “౰ͯ΍͍͢” ݸਓϢʔβʔ΍اۀϢʔβʔͷᅂ޷Λਖ਼͘͠ ༧ଌ͢Δ͜ͱͰߴ͍༧ଌੑೳͱͳ͍͔ͬͯͨ ࣮ݧ݁Ռ AUC Reciprocal PS User PS Company PS ఏҊख๏ᶄ 0.713 0.723 0.721 ఏҊख๏ᶄ + Bias 0.780 0.657 0.702 Preference Score ͷ༧ଌʹ Biased Matrix Factorization Λద༻ʢBiasʣ

Slide 36

Slide 36 text

©2022 Wantedly, Inc. ࣮ݧ͢Δख๏ᶄ Reciprocal Preference Score ܭࢉ࣌ͷ Aggregation Function ʹϩδεςΟΫεճؼΛ࠾༻͠ɺ Ϛονʹ࠷దͳॏΈΛֶशͯ֫͠ಘʢLR()ʣ • ݸਓϢʔβʔͱاۀϢʔβʔͷ૊ʹରͯ͠ɺͦΕͧΕͷ༧ଌ Preference Score ೖྗͱͯ͠ɺϚον ͔ͨ͠Ͳ͏͔Λ༧ଌ͢ΔϩδεςΟοΫճؼʹΑΓॏΈΛֶशʢLR(preds)ʣ logit(p) = a + b1 * PSu + b2 * PSc PSu PSc : ݸਓϢʔβʔͷ༧ଌ Preference Score : اۀϢʔβʔͷ༧ଌ Preference Score • ݸਓϢʔβʔɺاۀϢʔβʔ͝ͱʹҟͳΔॏΈΛಘΔͨΊʹɺone-hot ϕΫτϧΛೖྗʹՃֶ͑ͯश ʢLR(preds + one-hot)ʣ logit(p) = a + b1 * PSu + b2 * PSc + ∑ u∈ 𝕌 bu * onehotu + ∑ c∈ℂ bc * onehotc logit(p) = a + b1 * PSu + b2 * PSc + b3 * PSu * PSc + ∑ u∈ 𝕌 bu * onehotu + ∑ c∈ℂ bc * onehotc • ௐ࿨ฏۉͷੑೳ͕ྑ͍͜ͱ͔Βɺަޓ࡞༻Λߟྀ͢ΔͨΊʹݸਓͱاۀͷ Preference Score ͷੵΛ ೖྗʹՃֶ͑ͯशʢLR(preds + one-hot + interaction)ʣ

Slide 37

Slide 37 text

©2022 Wantedly, Inc. ࣮ݧ݁Ռᶅ AUC طଘख๏ᶃʢRCFʣ 0.623 طଘख๏ᶃʢLFRRʣ 0.566 طଘख๏ᶄʢLFRR + Scaler + Negʣ 0.713 طଘख๏ᶄ + Bias 0.780 طଘख๏ᶄ + Bias + LR(preds) 0.772 طଘख๏ᶄ + Bias + LR(preds + one-hot) 0.803 طଘख๏ᶄ + Bias + LR(preds + one-hot + interaction) 0.817 ఏҊख๏ͱطଘख๏ᶃᶄͱͷൺֱ·ͱΊ • Aggregation Function ͷॏΈΛϩδεςΟοΫճؼʹΑΓಘΔ͜ͱͰશମతʹ༧ଌ ੑೳ͸޲্ • ࠷ऴతʹɺࠓճͷఏҊख๏Λ͢΂ͯՃ͑ͨ΋ͷͷੑೳ͕࠷΋ߴ͘

Slide 38

Slide 38 text

©2022 Wantedly, Inc. • ૬ޓਪનγεςϜͷ঺հ • ʮαʔϏε಺ͷϢʔβΛޓ͍ʹਪન͢ΔγεςϜʯ • ͓ޓ͍ͷᅂ޷͕Ұகͯ͠ॳΊͯਪન͕"੒ޭ"ͨ͜͠ͱʹͳΔ • ݚڀ͸·ͩ·ͩ͜Ε͔Βൃలͷ༨஍͋Γ • ձࣾ๚໰ΞϓϦ Wantedly Visit ͷ࣮σʔλΛར༻ͨ͠ݕূ࣮ݧͷ঺հ • طଘݚڀͷख๏ΛϕʔεϥΠϯͱͨ͠վળख๏ͷධՁ࣮ݧ • γεςϜ಺ͷ༷ʑͳϢʔβʔͷੑ࣭Λߟྀͨ͠վળख๏ʹΑΓੑೳͷ޲্Λ֬ೝ • Biased Matrix Preference Score ͷ༧ଌʹ Biased Matrix Factorization Λద༻ʢBiasʣ • Reciprocal Preference Score ܭࢉ࣌ͷ Aggregation Function ʹϩδεςΟΫεճؼΛ࠾༻͠ɺ Ϛονʹ࠷దͳॏΈΛֶशͯ֫͠ಘʢLR()ʣ ·ͱΊ

Slide 39

Slide 39 text

©2022 Wantedly, Inc. 3FGT • (Pizzato 2010) Luiz Pizzato, Tomek Rej, Thomas Chung, Irena Koprinska, and Judy Kay. 2010. RECON: a reciprocal recommender for online dating. Proceedings of the fourth ACM conference on Recommender systems P. 207-214 . • (Pizzato 2012) Luiz Pizzato, Tomasz Rej, Joshua Akehurst, Irena Koprinska, Kalina Yacef, and Judy Kay. 2012. Recommending people to people: the nature of reciprocal recommenders with a case study in online dating. User Model User-Adap Inter (2013) 23: 447 . • (Xia 2015) Peng Xia, Benyuan Liu, Yizhou Sun, and Cindy Chen. 2015. Reciprocal Reciprocal recommendation System for Online Dating. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining P. 234-241. • (Neve 2019) J Neve, I Palomares.2019. Latent Factor Models and Aggregation Operators for Collaborative Filtering in Reciprocal Recommender Systems Proceedings of the 13th ACM Conference on Recommender Systems, 219-227 . • (Neve 2020) J Neve, R McConville.2020. ImRec: Learning Reciprocal Preferences Using Images. Proceedings of the 14th ACM Conference on Recommender Systems, 170-179.