Slide 51
Slide 51 text
Tutorial of Geometric Solvers for Reconstruction And Pose estimation (GSRAP)
Solvers implemented in GSRAP (To be added)
Estimation of relative pose from 2D-2D point correspondences
• Nister’s 5-point algorithm (𝑛 ≥ 5, Essential matrix E)
• D. Nistér, “An efficient solution to the five-point relative pose problem”, TPAMI, Vol.26, Issue 6, pp.756–777, 2004
Estimation of absolute pose R, 𝐭 from 2D-3D point correspondences
• Ke’s P3P algorithm (𝑛 = 3)
• T. Ke, S. I. Roumeliotis, “An Efficient Algebraic Solution to the Perspective-Three-Point Problem”, pp.7225-7233, CVPR, 2017
• EPnP: Efficient Perspective-n-Point Camera Pose Estimation (𝑛 ≥ 4)
• V. Lepetit, F. Moreno-Noguer, P. Fua, “EPnP: An Accurate O(n) Solution to the PnP Problem”, IJCV, 2009
Estimation of similarity transformations R, 𝐭, s from 3D-3D point correspondences
• Umeyama algorithm (𝑛 ≥ 3)
• S. Umeyama, “Least-Squares Estimation of Transformation Parameters Between Two Point Patterns”, pp. 376-380, Vol.13, TPAMI, 1991
※ We implemented Nister’s 5-point algoritm and EPnP withOpenGV, and Ke’s P3P algorithm with OpenCV.
• L. Kneip, P. Furgale, "OpenGV: A unified and generalized approach to real-time calibrated geometric vision", ICRA, May 2014
• OpenCV, https://github.com/opencv/opencv
51
Template-based RANSAC allows consistent implementation for all solvers