Slide 29
Slide 29 text
Cover’s Theorem Preliminaries to Cover’s Theorem
We affirm that w∗, x > 0 if x in X+. In fact, let x in X+ then
w∗, x = − w2
, y w1
+ w1
, y w2
, x
= − w2
, y
>0
w1
, x
>0
+ w1
, y
>0
w2
, x
>0
> 0
then w∗, x > 0 for all x in X+.
We affirm that w∗, x < 0 if x in X−. In fact, let x in X− then
w∗, x = − w2
, y w1
+ w1
, y w2
, x
= − w2
, y
<0
w1
, x
>0
+ w1
, y
>0
w2
, x
<0
< 0
then w∗, x < 0 for all x in X−.
We conclude that {X+, X−} is homogeneously separable by the vector
w∗.
29 / 125