Unsupervised Latent Tree Induction with Deep
Inside-Outside Recursive Autoencoders
NAACL 2019
Slide 2
Slide 2 text
Introduction
• 句法分析被广泛用于NLP的下游任务
• Tree data少且集中于news领域,跨域困难。
• DIORA:无监督地从任何domain中提取浅层parsing和完整语法树
Slide 3
Slide 3 text
Introduction
• 模型建立在latent tree chart parser的现有工作上。
• - Semi-supervised recursive autoencoders for predicting sentiment
distributions
• - The forest convolutional network: Compositional distributional
semantics with a neural chart and without binarization
• - Learning to compose task-specific tree structures, AAAI 2018
• - Jointly Learning Sentence Embeddings and Syntax with Unsupervised
Tree-LSTMs
• CKY算法也是一种chart parser。
Slide 4
Slide 4 text
What is chart?
• 一个长度为T的sequence,可以制作一个T*T大小的chart
• Chart里的每个cell可以看作是内部节点,
• 是所有可能的subtree的软加权
I jump over the river
相关论文
• Semi-supervised recursive autoencoders for predicting sentiment
distributions
• The forest convolutional network: Compositional distributional semantics
with a neural chart and without binarization
• Learning to compose task-specific tree structures, AAAI 2018
• Jointly Learning Sentence Embeddings and Syntax with Unsupervised
Tree-LSTMs
• Do latent tree learning models identify meaningful structure in sentences?
• Grammar induction with neural language models: An unusual replication
• Structured alignment networks for matching sentences
• graph-based dependency parser + beam search: The insideoutside
recursive neural network model for dependency parsing
• Neural crf parsing