Slide 1

Slide 1 text

Ines Montani Explosion LLM

Slide 2

Slide 2 text

de fi nition s E volution

Slide 3

Slide 3 text

de fi nition s E volution rules or instructions โœ programming & rules

Slide 4

Slide 4 text

de fi nition s E volution rules or instructions โœ programming & rules machine learning examples ๐Ÿ“ supervised learning

Slide 5

Slide 5 text

de fi nition s E volution rules or instructions โœ programming & rules machine learning examples ๐Ÿ“ supervised learning in-context learning rules or instructions โœ LLM prompt engineering

Slide 6

Slide 6 text

de fi nition s E volution rules or instructions โœ programming & rules machine learning examples ๐Ÿ“ supervised learning in-context learning rules or instructions โœ LLM prompt engineering instructions: human-shaped, easy for non-experts, risk of data drift โœ

Slide 7

Slide 7 text

de fi nition s E volution rules or instructions โœ programming & rules machine learning examples ๐Ÿ“ supervised learning in-context learning rules or instructions โœ LLM prompt engineering instructions: human-shaped, easy for non-experts, risk of data drift โœ ๐Ÿ“ examples: nuanced and intuitive behaviors, specific to use case, labor-intensive

Slide 8

Slide 8 text

de fi nition s E volution rules or instructions โœ programming & rules machine learning examples ๐Ÿ“ supervised learning in-context learning rules or instructions โœ LLM prompt engineering ? ? LLM instructions: human-shaped, easy for non-experts, risk of data drift โœ ๐Ÿ“ examples: nuanced and intuitive behaviors, specific to use case, labor-intensive

Slide 9

Slide 9 text

Falcon MIXTRAL GPT-4 LLM

Slide 10

Slide 10 text

Falcon MIXTRAL GPT-4 good contextual results LLM

Slide 11

Slide 11 text

Falcon MIXTRAL GPT-4 good contextual results easy to use & configure LLM

Slide 12

Slide 12 text

Falcon MIXTRAL GPT-4 good contextual results easy to use & configure fast prototyping LLM

Slide 13

Slide 13 text

Falcon MIXTRAL GPT-4 good contextual results โš  transparency easy to use & configure fast prototyping LLM

Slide 14

Slide 14 text

Falcon MIXTRAL GPT-4 good contextual results โš  transparency โš  e iciency easy to use & configure fast prototyping LLM

Slide 15

Slide 15 text

Falcon MIXTRAL GPT-4 good contextual results โš  data privacy โš  transparency โš  e iciency easy to use & configure fast prototyping LLM

Slide 16

Slide 16 text

P rototype task-specific output ๐Ÿ’ฌ prompt ๐Ÿ“– text LLM GPT-4 API

Slide 17

Slide 17 text

P rototype task-specific output ๐Ÿ’ฌ prompt ๐Ÿ“– text LLM prompt model & transform output to structured data github.com/explosion/spacy-llm GPT-4 API

Slide 18

Slide 18 text

๐Ÿ“– text task-specific output P roduction P rototype task-specific output ๐Ÿ’ฌ prompt ๐Ÿ“– text LLM prompt model & transform output to structured data github.com/explosion/spacy-llm GPT-4 API

Slide 19

Slide 19 text

๐Ÿ“– text task-specific output P roduction P rototype task-specific output ๐Ÿ’ฌ prompt ๐Ÿ“– text LLM distilled task-specific components prompt model & transform output to structured data github.com/explosion/spacy-llm GPT-4 API

Slide 20

Slide 20 text

๐Ÿ“– text task-specific output P roduction P rototype task-specific output ๐Ÿ’ฌ prompt ๐Ÿ“– text LLM distilled task-specific components prompt model & transform output to structured data github.com/explosion/spacy-llm โœ… modular GPT-4 API

Slide 21

Slide 21 text

๐Ÿ“– text task-specific output P roduction P rototype task-specific output ๐Ÿ’ฌ prompt ๐Ÿ“– text LLM distilled task-specific components prompt model & transform output to structured data github.com/explosion/spacy-llm โœ… small & fast โœ… modular GPT-4 API

Slide 22

Slide 22 text

๐Ÿ“– text task-specific output P roduction P rototype task-specific output ๐Ÿ’ฌ prompt ๐Ÿ“– text LLM distilled task-specific components prompt model & transform output to structured data github.com/explosion/spacy-llm โœ… data-private โœ… small & fast โœ… modular GPT-4 API

Slide 23

Slide 23 text

in the loop H uma n explosion.ai/blog/human-in-the-loop-distillation LLM

Slide 24

Slide 24 text

in the loop H uma n explosion.ai/blog/human-in-the-loop-distillation continuous evaluation baseline LLM

Slide 25

Slide 25 text

in the loop H uma n explosion.ai/blog/human-in-the-loop-distillation continuous evaluation baseline LLM prompting

Slide 26

Slide 26 text

in the loop H uma n explosion.ai/blog/human-in-the-loop-distillation continuous evaluation baseline LLM prompting

Slide 27

Slide 27 text

in the loop H uma n explosion.ai/blog/human-in-the-loop-distillation continuous evaluation baseline LLM prompting transfer learning CO M PO N EN T

Slide 28

Slide 28 text

in the loop H uma n explosion.ai/blog/human-in-the-loop-distillation continuous evaluation baseline LLM prompting transfer learning CO M PO N EN T distilled model

Slide 29

Slide 29 text

Case Stud y : S&P Global 99% 99% โ€ข real-time commodities trading insights by extracting structured attributes 6mb 6mb model size 16k+ 16k+ words/second F-score explosion.ai/blog/sp-global-commodities

Slide 30

Slide 30 text

Case Stud y : S&P Global 99% 99% โ€ข real-time commodities trading insights by extracting structured attributes โ€ข high-security environment 6mb 6mb model size 16k+ 16k+ words/second F-score explosion.ai/blog/sp-global-commodities

Slide 31

Slide 31 text

Case Stud y : S&P Global 99% 99% โ€ข real-time commodities trading insights by extracting structured attributes โ€ข high-security environment โ€ข used LLM during annotation 6mb 6mb model size 16k+ 16k+ words/second F-score explosion.ai/blog/sp-global-commodities

Slide 32

Slide 32 text

Case Stud y : S&P Global 99% 99% โ€ข real-time commodities trading insights by extracting structured attributes โ€ข high-security environment โ€ข used LLM during annotation โ€ข 10ร— data development speedup with humans and model in the loop 6mb 6mb model size 16k+ 16k+ words/second F-score explosion.ai/blog/sp-global-commodities

Slide 33

Slide 33 text

Case Stud y : S&P Global 99% 99% โ€ข real-time commodities trading insights by extracting structured attributes โ€ข high-security environment โ€ข used LLM during annotation โ€ข 10ร— data development speedup with humans and model in the loop โ€ข 8 market pipelines in production 6mb 6mb model size 16k+ 16k+ words/second F-score explosion.ai/blog/sp-global-commodities

Slide 34

Slide 34 text

Case Stud y : S&P Global 99% 99% โ€ข real-time commodities trading insights by extracting structured attributes โ€ข high-security environment โ€ข used LLM during annotation โ€ข 10ร— data development speedup with humans and model in the loop โ€ข 8 market pipelines in production 6mb 6mb model size 16k+ 16k+ words/second F-score explosion.ai/blog/sp-global-commodities

Slide 35

Slide 35 text

Refactor your code and data.

Slide 36

Slide 36 text

Software 1.0 Software 1.0 ๐Ÿ“„ code ๐Ÿ’พ program compiler

Slide 37

Slide 37 text

Software 1.0 Software 1.0 ๐Ÿ“„ code ๐Ÿ’พ program compiler Software 2.0 Software 2.0 ๐Ÿ“Š data ๐Ÿ”ฎ model algorithm

Slide 38

Slide 38 text

Software 1.0 Software 1.0 ๐Ÿ“„ code ๐Ÿ’พ program compiler Software 2.0 Software 2.0 ๐Ÿ“Š data ๐Ÿ”ฎ model algorithm โœ… tests ๐Ÿ“ˆ evaluation

Slide 39

Slide 39 text

Software 1.0 Software 1.0 ๐Ÿ“„ code ๐Ÿ’พ program compiler Software 2.0 Software 2.0 ๐Ÿ“Š data ๐Ÿ”ฎ model algorithm โœ… tests ๐Ÿ“ˆ evaluation refactoring refactoring iteration iteration

Slide 40

Slide 40 text

I lo v e cats. SIMILAR OR NOT? I ha t e cats.

Slide 41

Slide 41 text

I lo v e cats. SIMILAR OR NOT? I ha t e cats. Your application context always matters!

Slide 42

Slide 42 text

Case Stud y : GitLab 1 year 1 year 6ร— โ€ข extract actionable insights from support tickets and usage questions 6ร— speedup of support tickets explosion.ai/blog/gitlab-support-insights

Slide 43

Slide 43 text

Case Stud y : GitLab 1 year 1 year 6ร— โ€ข extract actionable insights from support tickets and usage questions โ€ข high-security environment 6ร— speedup of support tickets explosion.ai/blog/gitlab-support-insights

Slide 44

Slide 44 text

Case Stud y : GitLab 1 year 1 year 6ร— โ€ข extract actionable insights from support tickets and usage questions โ€ข high-security environment โ€ข easy to adapt to new scenarios and business questions 6ร— speedup of support tickets explosion.ai/blog/gitlab-support-insights

Slide 45

Slide 45 text

Case Stud y : GitLab 1 year 1 year 6ร— โ€ข extract actionable insights from support tickets and usage questions โ€ข high-security environment โ€ข easy to adapt to new scenarios and business questions โ€ข separated general-purpose features from product-specific logic 6ร— speedup of support tickets explosion.ai/blog/gitlab-support-insights

Slide 46

Slide 46 text

Case Stud y : GitLab 1 year 1 year 6ร— โ€ข extract actionable insights from support tickets and usage questions โ€ข high-security environment โ€ข easy to adapt to new scenarios and business questions โ€ข separated general-purpose features from product-specific logic 6ร— speedup of support tickets explosion.ai/blog/gitlab-support-insights

Slide 47

Slide 47 text

Language is just another interface.

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

โ€œknocker-uppersโ€

Slide 50

Slide 50 text

The Window K nocking Machine Tes t ines.io/blog/window-knocking-machine-test โ€œknocker-uppersโ€

Slide 51

Slide 51 text

The Window K nocking Machine Tes t ines.io/blog/window-knocking-machine-test Are you designing a window-knocking machine or an alarm clock? โ€œknocker-uppersโ€

Slide 52

Slide 52 text

Hello, I โ€™ m Toni โ€™ s virtual assistant and I help schedule appointments. Do you have time at 1pm on Monday? No, but Tuesday would work for me. Okay, please confirm: Tuesday at 1pm? 1pm is unideal but 3pm would work. Toni doesn โ€™ t have availability at 3pm but I could offer a slot at 4pm or 5 : 30pm. Which time zone is this by the way? I โ€™ m in CET. ines.io/blog/window-knocking-machine-test

Slide 53

Slide 53 text

Hello, I โ€™ m Toni โ€™ s virtual assistant and I help schedule appointments. Do you have time at 1pm on Monday? No, but Tuesday would work for me. Okay, please confirm: Tuesday at 1pm? 1pm is unideal but 3pm would work. Toni doesn โ€™ t have availability at 3pm but I could offer a slot at 4pm or 5 : 30pm. Which time zone is this by the way? I โ€™ m in CET. Calendly ines.io/blog/window-knocking-machine-test

Slide 54

Slide 54 text

Hello, I โ€™ m Toni โ€™ s virtual assistant and I help schedule appointments. Do you have time at 1pm on Monday? No, but Tuesday would work for me. Okay, please confirm: Tuesday at 1pm? 1pm is unideal but 3pm would work. Toni doesn โ€™ t have availability at 3pm but I could offer a slot at 4pm or 5 : 30pm. Which time zone is this by the way? I โ€™ m in CET. Calendly โ€œwindow-knocking machineโ€ โ€œalarm clockโ€ ines.io/blog/window-knocking-machine-test

Slide 55

Slide 55 text

What โ€™ s the total services revenue from 2023? $2,923,531 How many clients is that in total? 29 โบ โบ โบ ines.io/blog/window-knocking-machine-test

Slide 56

Slide 56 text

What โ€™ s the total services revenue from 2023? $2,923,531 How many clients is that in total? 29 โบ โบ โบ ๐Ÿ”ฎ LLM ๐Ÿ“š database ๐Ÿค– agents โš™ query Retrieval-Augmented Generation ines.io/blog/window-knocking-machine-test

Slide 57

Slide 57 text

2023 Year Services Type ACME Inc. FooBar GmbH NLPCorp XKCD Ltd. Python AG 432,032 82,000 1,500 193,000 91,320 $ 2,625,032 Clients (28) Revenue What โ€™ s the total services revenue from 2023? $2,923,531 How many clients is that in total? 29 โบ โบ โบ ๐Ÿ”ฎ LLM ๐Ÿ“š database ๐Ÿค– agents โš™ query Retrieval-Augmented Generation ines.io/blog/window-knocking-machine-test

Slide 58

Slide 58 text

2023 Year Services Type ACME Inc. FooBar GmbH NLPCorp XKCD Ltd. Python AG 432,032 82,000 1,500 193,000 91,320 $ 2,625,032 Clients (28) Revenue A I still needs produc t decisions! Kim Miller Analyst What โ€™ s the total services revenue from 2023? $2,923,531 How many clients is that in total? 29 โบ โบ โบ ๐Ÿ”ฎ LLM ๐Ÿ“š database ๐Ÿค– agents โš™ query Retrieval-Augmented Generation ines.io/blog/window-knocking-machine-test

Slide 59

Slide 59 text

Summar y APPLIED NLP & GEN AI APPLIED NLP & GEN AI

Slide 60

Slide 60 text

Reason and refactor. The key to success lies in your data and may surprise you! Summar y APPLIED NLP & GEN AI APPLIED NLP & GEN AI

Slide 61

Slide 61 text

Reason and refactor. The key to success lies in your data and may surprise you! Summar y APPLIED NLP & GEN AI APPLIED NLP & GEN AI Think beyond chat bots. You donโ€™t want to build a โ€œwindow-knocking machineโ€.

Slide 62

Slide 62 text

Reason and refactor. The key to success lies in your data and may surprise you! LLM Stay ambitious. Donโ€™t compromise on best practices, e iciency and privacy. Summar y APPLIED NLP & GEN AI APPLIED NLP & GEN AI Think beyond chat bots. You donโ€™t want to build a โ€œwindow-knocking machineโ€.

Slide 63

Slide 63 text

Explosion spaCy Prodigy Twitter Mastodon Bluesky explosion.ai spacy.io prodigy.ai @_inesmontani @[email protected] @inesmontani.bsky.social LinkedIn