Slide 1

Slide 1 text

Maps♥ Data A voyage across the world of geo-visualization Rasagy Sharma Information Designer & Data Artist

Slide 2

Slide 2 text

What does the term map mean? Mapping data/information vs making a map: Verb vs noun As a noun: conceptual, geographic, schematic, contextual, fantasy…

Slide 3

Slide 3 text

Mapping maps Detailed (Lot of Geographical data) Abstract (Less/No Geographical data) Accurate & real Imaginary or conceptual Geographic maps Schematic maps Mind mapping Charts Fiction or Fantasy maps

Slide 4

Slide 4 text

Custom Mapboxstyles by Rasagy, including Heads Up & Moonlight

Slide 5

Slide 5 text

Traffic Fatalities in Washington D.C., exhibited in Berlin

Slide 6

Slide 6 text

Part of research collaboration with Jennings Anderson

Slide 7

Slide 7 text

Collaboration with Harsha (Mint team)

Slide 8

Slide 8 text

Tableau Dashboard for MADTA hackathon

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

This was once home

Slide 11

Slide 11 text

Visualizing trains, exhibited at NGMA, Bengaluru

Slide 12

Slide 12 text

WHAT can I do with this data? can I visualize this well? HOW

Slide 13

Slide 13 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 14

Slide 14 text

1. Introduction: Geo (map) + viz (data) 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 15

Slide 15 text

Babylonian Map of the World (~600 BC), Anaximander’s Map (~600 BC vs today) , Leonardo da Vinci, “Town plan of Imola” 1502

Slide 16

Slide 16 text

“Whale Chart” (1851), Map of Hindoostan(1822)

Slide 17

Slide 17 text

Maps as a representation of world’s data • Area covered by water vs land • Terrain type • Country borders • Buildings, land use • Transport network • Points of interest • & more

Slide 18

Slide 18 text

How map data is stored: Raster vs Vector Raster: • Image/pixel • Data in bands • Ex: Satellite imagery (RGB & more), Elevation, Temperature etc. • Formats: GeoTIFF, JPEG2000 Vector: • Geometry: Point, line, polygon • Can have more attributes • Ex: Road network, Contour lines, Points of Interest, Building outlines & heights etc. • Formats: Shapefile, GeoJSON, TopoJSON*, KML, CSV…

Slide 19

Slide 19 text

Data that you can show on a map: nodes, ways, relations Created using Geojson.io using OpenStreetMap

Slide 20

Slide 20 text

Maps turn the real world into 2D • Projection: Equations to turn the earth into a 2D surface • Latitude & Longitude • Geocoding: Place à (long,lat) Illustrations from Map School, Transition by Mike Bostock

Slide 21

Slide 21 text

Xkcdon Map Projections

Slide 22

Slide 22 text

Figure & ground Visualizing bus stops & telemetry data by Rasagy

Slide 23

Slide 23 text

Layers to visualize on top of: Streets, Light, Dark Mapboxbasemap styles

Slide 24

Slide 24 text

1. Introduction: Think about the basemap & the data 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 25

Slide 25 text

1. Introduction 2. Maps as viz: Visualizing data within layers of a map 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 26

Slide 26 text

Maps as visualization: Traffic Visualizing traffic in Delhi

Slide 27

Slide 27 text

Maps as visualization: Popular areas Delhi on Google Maps

Slide 28

Slide 28 text

1. Introduction 2. Maps as viz: Subtle, layered in the map 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 29

Slide 29 text

1. Introduction 2. Maps as viz 3. Dots: Showing your data on top of a map 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 30

Slide 30 text

Selecting a base map Created using MapboxStudio

Slide 31

Slide 31 text

Adding data as dots Bus stop Data from OpenStreetMap

Slide 32

Slide 32 text

Dots + opacity

Slide 33

Slide 33 text

Dots + opacity + color

Slide 34

Slide 34 text

Dots + opacity + color + size

Slide 35

Slide 35 text

Visual encoding: Mapping data to visual properties Visual Encoding by Noah Iliinsky

Slide 36

Slide 36 text

Where is Ukraine: dots + opacity + color Where Americans think Ukraine is

Slide 37

Slide 37 text

Racial segregation: dots + color Demographics Research Group, U of Virginia

Slide 38

Slide 38 text

Mapping homeless population: dots + color Understanding Homelessness

Slide 39

Slide 39 text

Earthquakes: symbols + opacity + size + color + time Volcano map using Axis Maps

Slide 40

Slide 40 text

2019 Lok Sabha verdict: dots + size + color Mint Article

Slide 41

Slide 41 text

Jobs gained vs lost: dots + size + color + time Geography of job loss

Slide 42

Slide 42 text

Potholes in New Jersey: too many dots? Pothole map

Slide 43

Slide 43 text

Clusters: Easy to read + Interactive Cluster demo

Slide 44

Slide 44 text

1. Introduction 2. Maps as viz 3. Dots: Visual encoding + controlling density 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 45

Slide 45 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths: Visualizing using geographical areas 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 46

Slide 46 text

Trade with China: Light to dark https://qz.com/950261/trump-xi-meeting-the-us- states-that-rely-the-most-on-trade-with-china/

Slide 47

Slide 47 text

Unemployment rate: Hue + Brightness https://bl.ocks.org/mbostock/4060606

Slide 48

Slide 48 text

Paddy crop farming in India: Area & Production India Data Portal by Gramener Production (tonnes) across states & districts Crop area (hectares) across states & districts

Slide 49

Slide 49 text

BJP votes by turnout, Type of employers of women Mint

Slide 50

Slide 50 text

Color progressions in Choropleths Mapboxblogpost

Slide 51

Slide 51 text

NYC Tree map: Interactive choropleth → dot map https://tree-map.nycgovparks.org

Slide 52

Slide 52 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths: Familiar, but is data based on area? 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 53

Slide 53 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins: Splitting the map into small pieces 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 54

Slide 54 text

Hex bins: South Africa, Nebraska, and Kenya Hex bins in Mapbox

Slide 55

Slide 55 text

Germany in circles: Income & Agriculture Zeit Magazine

Slide 56

Slide 56 text

Deficient rainfall in India Mint

Slide 57

Slide 57 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins: Best of clustering & choropleths 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 58

Slide 58 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram: Skewing map with data 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 59

Slide 59 text

Map of the world: Population to skew Big think article

Slide 60

Slide 60 text

Interactive Cartogram: Varying data fields WorldMapper

Slide 61

Slide 61 text

Dorling Cartogram: Obesity in USA (count & percentage) D3 example

Slide 62

Slide 62 text

Square cartogram: Size for policies, color for status New York Times

Slide 63

Slide 63 text

2019 Indian Elections: Choropleth vs Cartogram General Election Results Explorer

Slide 64

Slide 64 text

Choropleth vs Tiled grids: States with nondiscrimination laws NPR Blog

Slide 65

Slide 65 text

Tiled grid + small multiples: Obesity over the year http://flowingdata.com/2016/09/26/the-spread-of-obesity/

Slide 66

Slide 66 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram: Harder to create, more honest 7. Heatmap 8. Isopleths 9. Flow maps 10.3D

Slide 67

Slide 67 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap: Smoother distribution on a map 8. Isopleths 9. Flow maps 10.3D

Slide 68

Slide 68 text

Interactive heatmap: Clustering for attention https://blog.mapbox.com/mapbox-helps-power-snap-map- 4ced4fb3176a

Slide 69

Slide 69 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap: High level overview, choose colors wisely 8. Isopleths 9. Flow maps 10.3D

Slide 70

Slide 70 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths: Using lines to mark data as boundaries 9. Flow maps 10.3D

Slide 71

Slide 71 text

Contour maps/Isopleths: Distances you can cover in x time https://www.mapbox.com/bites/00156/

Slide 72

Slide 72 text

Metro connectivity in Delhi Mint

Slide 73

Slide 73 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths: Dynamic, novel view of time-based data 9. Flow maps 10.3D

Slide 74

Slide 74 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps: Connecting a map 10.3D

Slide 75

Slide 75 text

Flow: Slave trade from Africa http://yalebooks.yale.edu/book/9780300212549/atlas-transatlantic-slave-trade

Slide 76

Slide 76 text

Migration in Indian metros Mint

Slide 77

Slide 77 text

Flow: Where students go to study NY Times

Slide 78

Slide 78 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps: Connections lead to stories 10.3D

Slide 79

Slide 79 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D: Using another dimension

Slide 80

Slide 80 text

Colored buildings: Zoning map for Vancouver • http://maps.nichols onroad.com/zones/

Slide 81

Slide 81 text

Density & count: Height for density, volume for count • https://www.m apbox.com/bit es/00273/

Slide 82

Slide 82 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D: Do you really need to use another dimension?

Slide 83

Slide 83 text

1. Introduction 2. Maps as viz 3. Dots 4. Choropleths 5. Bins 6. Cartogram 7. Heatmap 8. Isopleths 9. Flow maps 10.3D: Using another dimension

Slide 84

Slide 84 text

The spectrum of tools Interactive tools: Tableau, Flourish, Mapbox Studio… Programming libraries: d3 (js), Mapbox GL (js), Deck GL (js), ggmap (R), basemap+matplotlib (Python) GIS tools: ArcGIS, QGIS…

Slide 85

Slide 85 text

Indian choropleths using Excel https://gramener.com/map/

Slide 86

Slide 86 text

Flourish templates https://flourish.studio/examples/

Slide 87

Slide 87 text

Tableau’s Story points https://public.tableau.com/

Slide 88

Slide 88 text

QGIS: Open source, great for print https://qgis.org/en/site/

Slide 89

Slide 89 text

Mapbox: Interactive geo viz on web https://demos.mapbox.com/scrollytelling/

Slide 90

Slide 90 text

Where to get Indian data • Datameet shapefiles (github.com/datameet/maps) • Open data portals (data.gov.in, indiadataportal.com etc.) • OpenStreetMap (openstreetmap.org, extract using overpass-turbo.eu) • Ask on Datameet group (datameet.org & google group)

Slide 91

Slide 91 text

“Nothing is certain in this life but death, taxes and requests for geographic data to be represented on a map.” — Danny DeBelius (NPR)

Slide 92

Slide 92 text

Twitter: @rasagy Instagram: @rasagy.sharma / @data.n.coded