Slide 84
Slide 84 text
SELECT sys.ML_PREDICT_ROW(
JSON_OBJECT("age", "30", "job", "services",
"marital", "married",
"education", "secondary",
"default1", "no",
"balance", "7032",
"housing", "no",
"loan", "no",
"contact", "cellular",
"day", "17",
"month", "jul",
"duration", "402",
"campaign", "1",
"pdays", "-1",
"previous", "0",
"poutcome", "unknown"
"id", "0"), @confoo24, NULL);
{ "id": 0.0,
"age": 30.0,
"day": 17.0,
"job": "services",
"loan": "no",
"month": "jul",
"pdays": -1.0,
"balance": 7032.0,
"contact": "cellular",
"housing": "no",
"marital": "married",
"campaign": 1.0,
"default1": "no",
"duration": 402.0,
"poutcome": "unknown",
"previous": 0.0,
"education": "secondary",
"Prediction": "no",
"ml_results": {"predictions": {"y": "no"},
"probabilities": {
"no": 0.8799999952316284,
"yes": 0.11999999731779099}} }
MySQL HeatWave at the service of ML
Copyright @ 2024 Oracle and/or its affiliates.
75