Slide 2
Slide 2 text
จ֓ཁ
ߴ͍ੑೳΛތΔ tree boosting Λ࣮ͨ͠ϥΠϒϥϦଟ͘ଘࡏ
ͦΕΒͷதͰ XGBoost ͷͲ͕͜ͲΕ͘Β͍༏Ε͍ͯΔͷ͔Λઆ໌
→ scalability ͱ speed ʹඞཁͳཁૉΛཏతʹ࣮
˞ਫ਼ࣗମଞϥΠϒϥϦͱಉఔ
දݪจΑΓҾ༻
Table 1: Comparison of major tree boosting systems.
System
exact
greedy
approximate
global
approximate
local
out-of-core
sparsity
aware
parallel
XGBoost yes yes yes yes yes yes
pGBRT no no yes no no yes
Spark MLLib no yes no no partially yes
H2O no yes no no partially yes
scikit-learn yes no no no no no
R GBM yes no no no partially no
t choosing 216 examples per block balances the
erty and parallelization.
cks for Out-of-core Computation
There are several existing works on parallelizing
ing [22, 19]. Most of these algorithms fall in
proximate framework described in this paper.
is also possible to partition data by columns [2
tree ͷׂʹ
ࡍͯ͠Մೳͳ
߹ͤΛશ୳ࡧ
ಛྔΛࢄԽͯۙ͠ࣅతʹѻ͏
global શͯͷࢬͰಉ͡ѻ͍
local split ຖʹѻ͍Λมߋ
ϝϞϦʹΒͳ͍߹
ʹ֎෦ഔମ͔Βͷ
ಡΈࠐΈͰಈ࡞
ࢄॲཧͷ࣮
εύʔεͳมʹର͢Δ
efficient ͳॲཧͷ࣮
yes
2/10