Slide 39
Slide 39 text
A telling counter-example
Proposition Let µθ = δθ
with θ ∈ Rd , and let ν = 1
2
δy1
+ 1
2
δy2
with
y1, y2 ∈ Rd distinct. Let c(x, y) = x − y p
p
, p > 1. Then
• θ → W(θ) is differentiable everywhere.
• For θ0 = y1+y2
2
and any ψ∗
0
∈ argmaxψ
F(ψ, θ0), θ → F(ψ∗
0
, θ) is not
differentiable at θ0
.
Hence (Grad-OT) relation does not hold (except for θ0 = y1+y2
2
).
Proof
• F(ψ, θ) = ψc(θ) + 2
j=1
1
2
ψj = mini=1,2 [c(θ, yj ) − ψi ] + ψ1+ψ2
2
Fix θ0
and ψ∗
0
, then (ψ∗
0
)1 − (ψ∗
0
)2 = c(θ0, y1) − c(θ0, y2), and
F(ψ∗
0
, θ) =
c(θ, y1) + 1
2
c(θ0, y2) − c(θ0, y1) if θ ∈ L1(ψ∗
0
)
c(θ, y2) + 1
2
c(θ0, y1) − c(θ0, y2) if θ ∈ L2(ψ∗
0
)
F(ψ∗
0
, ·) not differentiable at the boundary between L1(ψ∗
0
) and L2(ψ∗
0
)
N. Papadakis Wasserstein Generative Models for Texture Synthesis 20 / 1