Slide 8
Slide 8 text
Low-rank matrix estimation A bootstrap framework Results Other noise
Shrinking - thresholding SVD
⇒ Non linear shrinkage: ˆ
µshrink = min{n, p}
l=1
ul ψ (dl ) v
l
• Shabalin & Nobel (2013); Gavish & Donoho (2014). Asymptotic
n = np and p → ∞, np/p → β, 0 < β ≤ 1
ψ(dl ) =
1
dl
d2
l
− (β − 1)nσ2 2
− 4βnσ4 · 1 l ≥ (1 + β)nσ2
• Verbank, Josse & Husson (2013). Asymptotic n, p fixed, σ → 0
X = µ + ε, with εij ∼ N 0, σ2
ψ(dl ) = dl
d2
l
− σ2
d2
l
· 1(l ≤ k)
signal variance
total variance
5 / 28