Slide 1

Slide 1 text

C-LIS CO., LTD.

Slide 2

Slide 2 text

C-LIS CO., LTD. ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ $-*4$0 -5% "OESPJEΞϓϦ։ൃνϣοτσΩϧ ػցֶशॳ৺ऀͱɺݴ͍ଓ͚ͯૣ̍೥൒ Photo : Koji MORIGUCHI (AUN CREATIVE FIRM)

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

݄̐̕೔ʢ೔ʣ ΞΩόɾεΫΤΞ ʰٕज़ॻయ̎ ͓ʔ̍̎ʱʹͯ TensorFlow͸͡Ί·ͨ͠
 Super Resolution ʔ ௒ղ૾ https://goo.gl/Z3Exjo ׬ച͠·ͨ͠

Slide 5

Slide 5 text

৞ΈࠐΈΦʔτΤϯίʔμʔ conv1 9x9x3 64 padding: SAME conv2 9x9x64 128 conv4 5x5x128 64 conv3-0 7x7x128 128 conv3-1 7x7x128 128 dconv1 9x9x64 3 padding: SAME dconv2 9x9x128 64 dconv4 5x5x64 128 dconv3-1 7x7x128 128 dconv3-2 7x7x128 128 conv3-2 7x7x128 128 dconv3-2 7x7x128 128 256x256 256x256

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

5FOTPS'MPX6TFS(SPVQ 5FOTPS'MPX
 (16

Slide 8

Slide 8 text

5FOTPS'MPXͱ(16

Slide 9

Slide 9 text

લఏ৚݅ (16$6%"$PNQVUF$BQBCJMJUZ $6%"5PPMLJU DV%//W QJQJOTUBMMUFOTPSqPXHQV https://www.tensorflow.org/install/install_linux

Slide 10

Slide 10 text

(16΁ͷॲཧͷׂΓ౰ͯ XJUIUGEFWJDF HQVEJ 
 QBTT


Slide 11

Slide 11 text

Ϛϧν(16 UPXFS@HSBET<> GPSJJOSBOHF '-"(4OVN@HQVT 
 XJUIUGEFWJDF HQVEJ 
 XJUIUGOBNF@TDPQF T@E 508&3@/".& J BTTDPQF
 MPTT@@UPXFS@MPTT TDPQF GJMF@MJTU 
 .0%&-*/165@4*;& .0%&-065165@4*;& 
 '-"(4CBUDI@TJ[F 
 
 UGTVNNBSZTDBMBS UPUBM@MPTT MPTT 
 
 UGHFU@WBSJBCMF@TDPQF SFVTF@WBSJBCMFT 
 
 HSBETPQUDPNQVUF@HSBEJFOUT MPTT 
 UPXFS@HSBETBQQFOE HSBET

Slide 12

Slide 12 text

Ϛϧν(16 BWH@HSBET@@BWFSBHF@HSBEJFOUT UPXFS@HSBET 
 
 BQQMZ@HSBEJFOU@PQ@@BQQMZ@HSBEJFOUT BWH@HSBET PQU HMPCBM@TUFQ 
 
 WBSJBCMF@BWFSBHFTUGUSBJO&YQPOFOUJBM.PWJOH"WFSBHF 
 HMPCBM@TUFQ 
 WBSJBCMFT@BWFSBHFT@PQ WBSJBCMF@BWFSBHFTBQQMZ UGUSBJOBCMF@WBSJBCMFT 
 
 USBJO@PQUGHSPVQ BQQMZ@HSBEJFOU@PQ WBSJBCMFT@BWFSBHFT@PQ

Slide 13

Slide 13 text

5FOTPS#PBSE

Slide 14

Slide 14 text

(16̍ͭʹׂΓ౰ͯΔॲཧ Input Pipeline tf.train.shuffle_batch Ϟσϧ
 model.inference ޡࠩؔ਺
 __loss ޯ഑ͷܭࢉ
 compute_gradient __tower_loss ޯ഑ ʢgradsʣ ֶश
 σʔλ ڭࢣ
 σʔλ ਪ࿦݁Ռ ޡࠩ

Slide 15

Slide 15 text

શମͷॲཧ TOWER ޯ഑ ʢgradsʣ TOWER ޯ഑ ʢgradsʣ TOWER ޯ഑ ʢgradsʣ TOWER ޯ഑ ʢgradsʣ ޯ഑ͷฏۉΛܭࢉ
 __average_gradients શମͷޯ഑ ʢavg_gradsʣ ࠷దԽ
 __apply_gradients params params params params

Slide 16

Slide 16 text

%FNP

Slide 17

Slide 17 text

৞ΈࠐΈΦʔτΤϯίʔμʔ conv2 9x9x64 128 conv4 5x5x128 64 conv3-0 7x7x128 128 conv3-1 7x7x128 128 dconv2 9x9x128 64 dconv4 5x5x64 128 dconv3-1 7x7x128 128 dconv3-2 7x7x128 128 conv3-2 7x7x128 128 dconv3-2 7x7x128 128 256x256 256x256 conv1 9x9x3 64 padding: SAME dconv1 9x9x64 3 padding: SAME

Slide 18

Slide 18 text

ख࣋ͪͷ(16αʔόʔ $16*OUFM$PSFJ, .FNPSZ(# 44%(# (F'PSDF(59(#
 $6%"DPSF

Slide 19

Slide 19 text

͘͞ΒͷߴՐྗίϯϐϡʔςΟϯάʢ࣮ݧػʣ $169FPO$PSFʷ .FNPSZ(# 44%(# (F'PSDF(595*5"/9ʢ1BTDBMΞʔΩςΫνϟʣ(#ʷ
 $6%"DPSF (F'PSDF(595Jʢ1BTDBMΞʔΩςΫνϟʣ(#ʷ
 $6%"DPSF

Slide 20

Slide 20 text

https://blog.keiji.io/2016/05/cuda_error_no_device.html

Slide 21

Slide 21 text

ύλʔϯ"ɿυϥΠόʔͷΞοϓσʔτ

Slide 22

Slide 22 text

E tensorflow/stream_executor/cuda/cuda_dnn.cc:347] Loaded runtime CuDNN library: 4007 (compatibility version 4000) but source was compiled with 5103 (compatibility version 5100). ύλʔϯ#ɿ5FOTPS'MPXͷΞοϓσʔτ https://github.com/tensorflow/tensorflow/issues/4251

Slide 23

Slide 23 text

ύλʔϯ$

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

खݩͰ࣮ߦՄೳͳϞσϧͱɺ
 ࢴ໘ʹܝࡌՄೳͳϞσϧ͸ҧ͏

Slide 27

Slide 27 text

։ൃػ ͘͞ΒͷߴՐྗαʔόʔʢ2VBE(16Ϟσϧʣ $169FPO$PSFʷ .FNPSZ(# 44%(# (F'PSDF(595*5"/9ʢ.BYXFMMΞʔΩςΫνϟʣ(#ʷ
 $6%"DPSF 128 sample / batch learning rate 0.001

Slide 28

Slide 28 text

https://www.sakura.ad.jp/press/2017/0417_koukaryoku_hourly/

Slide 29

Slide 29 text

ݕূػ
 %FMM"-*&/8"3&93 $16*OUFM$PSFJ, .FNPSZ(# 44%(# (F'PSDF(59(#
 $6%"DPSF 128 sample / batch learning rate 0.001

Slide 30

Slide 30 text

஗͍ʜʜ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 128 sample / batch learning rate 0.001

Slide 31

Slide 31 text

(PPHMF$MPVE1MBUGPSN W$16 .FNPSZ 44% (F'PSDF5FTMB,ʢ(#ʷʣ
 $6%"DPSF ʷ

Slide 32

Slide 32 text

Slide 33

Slide 33 text

Slide 34

Slide 34 text

( Д ) ʄ ʄŴƅƃŕ

Slide 35

Slide 35 text

௨ৗ͸ΫΥʔλͰ੍ݶ͞Ε͍ͯΔ

Slide 36

Slide 36 text

: :

Slide 37

Slide 37 text

Hello, Thank you for requesting additional quota. To help us ensure that this is a legitimate request and that the resources you requested are available to you, please do one of the following: Make a payment [1] of $35 or the same amount in your currency from the Transaction History page [2] and reply to this message when the charge clears. Your payment will be applied to any charges you incur in the future and will be visible as a credit in your account. Alternatively, reply to this message with the project ID of another project that you own that has cleared a charge of at least the amount mentioned. To learn more about project quota requests and cores quota requests, check out the Project Quota Request FAQ page at [3] and the Request cores quota increase FAQs page at [4]. We appreciate your patience. Sincerely, Cloud Platform Support [1] - https://support.google.com/cloud/answer/6294016 [2] - https://console.cloud.google.com/billing [3] - https://support.google.com/cloud/answer/6330231 [4] - https://support.google.com/cloud/answer/6376374

Slide 38

Slide 38 text

Hello, Your quota request for Project '632906615582' has been approved and your project quota has been adjusted accordingly. Changed Quota: +--------------------+-----------------+ | Region: asia-east1 | NVIDIA_K80_GPUS | +--------------------+-----------------+ | Changes | 0 -> 1 | +--------------------+-----------------+ To verify the quota change, please navigate to https://console.developers.google.com/project/632906615582/compute/quotas and verify what are your current project quotas. Happy Computing! Google for Work Support http://support.google.com/enterprisehelp/

Slide 39

Slide 39 text

(PPHMF$MPVE1MBUGPSN W$16 .FNPSZ(# 44%(# (F'PSDF5FTMB,ʢ(#ʷʣ
 $6%"DPSF ʷ ͋·ΓมΘΒͣ……

Slide 40

Slide 40 text

ݪҼ͸ʁ

Slide 41

Slide 41 text

OWJEJBTNJ ]/7*%*"4.*%SJWFS7FSTJPO] ] ](16/BNF1FSTJTUFODF.]#VT*E%JTQ"]7PMBUJMF6ODPSS&$$] ]'BO5FNQ1FSG1XS6TBHF$BQ].FNPSZ6TBHF](166UJM$PNQVUF.] ]] ](F'PSDF(590GG]0O]/"] ]$188].J#.J#]%FGBVMU] ]1SPDFTTFT(16.FNPSZ] ](161*%5ZQF1SPDFTTOBNF6TBHF] ]] ](VTSMJCYPSH9PSH.J#] ]$QZUIPO.J#]

Slide 42

Slide 42 text

ˈUPQ

Slide 43

Slide 43 text

(16͕ಈ͍ͯͳ͍

Slide 44

Slide 44 text

DPOGJHUG$POGJH1SPUP 
 BMMPX@TPGU@QMBDFNFOU5SVF 
 MPH@EFWJDF@QMBDFNFOU'-"(4MPH@EFWJDF@QMBDFNFOU 
 XJUIUG4FTTJPO DPOGJHDPOGJH BTTFTT
 DIFDLQPJOUUGUSBJOHFU@DIFDLQPJOU@TUBUF USBJO@EJS 
 MPH@EFWJDF@QMBDFNFOU

Slide 45

Slide 45 text

I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_26: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_25: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_25: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_24: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_24: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_23: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_23: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_22: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_22: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_21: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_21: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_20: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0

Slide 46

Slide 46 text

I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_8: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_7: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_7: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_6: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_6: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_5: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_5: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_4: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_4: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_3: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_3: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_2: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0

Slide 47

Slide 47 text

I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_2: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2_1: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_1: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 save/RestoreV2: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2: (RestoreV2)/ job:localhost/replica:0/task:0/cpu:0 conv3/biases/ExponentialMovingAverage: (VariableV2): /job:localhost/replica:0/task:0/ cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] conv3/biases/ ExponentialMovingAverage: (VariableV2)/job:localhost/replica:0/task:0/cpu:0 save/Assign_22: (Assign): /job:localhost/replica:0/task:0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] save/Assign_22: (Assign)/ job:localhost/replica:0/task:0/cpu:0 conv3/biases/ExponentialMovingAverage/read: (Identity): /job:localhost/replica:0/task: 0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] conv3/biases/ ҎԼུ

Slide 48

Slide 48 text

ΦϖϨʔγϣϯ͕࣮ߦ͞ΕΔσόΠε (16 $16

Slide 49

Slide 49 text

I tensorflow/core/common_runtime/simple_placer.cc:841] tower_0/image_loader_vvv/ ReaderReadV2: (ReaderReadV2)/job:localhost/replica:0/task:0/cpu:0 tower_0/image_loader_vvv/DecodeJpeg: (DecodeJpeg): /job:localhost/replica:0/task: 0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] tower_0/image_loader_vvv/ DecodeJpeg: (DecodeJpeg)/job:localhost/replica:0/task:0/cpu:0 tower_0/image_loader_vvv/random_crop/Shape: (Shape): /job:localhost/replica:0/ task:0/gpu:0 EFDPEF@KQFH

Slide 50

Slide 50 text

Slide 51

Slide 51 text

Slide 52

Slide 52 text

Slide 53

Slide 53 text

Slide 54

Slide 54 text

I tensorflow/core/common_runtime/simple_placer.cc:841] tower_0/image_loader_vvv/ ReaderReadV2: (ReaderReadV2)/job:localhost/replica:0/task:0/cpu:0 tower_0/image_loader_vvv/DecodeJpeg: (DecodeJpeg): /job:localhost/replica:0/task: 0/cpu:0 I tensorflow/core/common_runtime/simple_placer.cc:841] tower_0/image_loader_vvv/ DecodeJpeg: (DecodeJpeg)/job:localhost/replica:0/task:0/cpu:0 tower_0/image_loader_vvv/random_crop/Shape: (Shape): /job:localhost/replica:0/ task:0/gpu:0 EFDPEF@KQFH

Slide 55

Slide 55 text

DPOGJHUG$POGJH1SPUP 
 BMMPX@TPGU@QMBDFNFOU5SVF 
 MPH@EFWJDF@QMBDFNFOU'-"(4MPH@EFWJDF@QMBDFNFOU 
 XJUIUG4FTTJPO DPOGJHDPOGJH BTTFTT
 DIFDLQPJOUUGUSBJOHFU@DIFDLQPJOU@TUBUF USBJO@EJS 
 BMMPX@TPGU@QMBDFNFOU

Slide 56

Slide 56 text

BMMPX@TPGU@QMBDFNFOU If you would like TensorFlow to automatically choose an existing and supported device to run the operations in case the specified one doesn't exist, you can set allow_soft_placement to True in the configuration option when creating the session. https://www.tensorflow.org/tutorials/using_gpu

Slide 57

Slide 57 text

EFG@MPBE@JNBHF GJMF@MJTU JOQVU@TJ[F PVUQVU@TJ[F DIBOOFMT TDBMF 
 XJUIUGOBNF@TDPQF JNBHF@MPBEFS@WWW 
 GJMFOBNF@RVFVFUGUSBJOTUSJOH@JOQVU@QSPEVDFS GJMF@MJTU 
 TIVGGMF5SVF 
 SFBEFSUG8IPMF'JMF3FBEFS 
 @ WBMVFSFBEFSSFBE GJMFOBNF@RVFVF 
 
 JNBHFUGJNBHFEFDPEF@KQFH WBMVF DIBOOFMTDIBOOFMT 
 DSPQQFE@JNBHFUGSBOEPN@DSPQ JNBHF JOQVU@TJ[F JOQVU@TJ[F DIBOOFMT 
 
 MS@JNBHFUGJNBHFSFTJ[F@JNBHFT DSPQQFE@JNBHF JOQVU@TJ[FTDBMF 
 JOQVU@TJ[FTDBMF 
 NFUIPEUGJNBHF3FTJ[F.FUIPE#*$6#*$ 
 
 MS@JNBHFUGJNBHFSFTJ[F@JNBHFT MS@JNBHF JOQVU@TJ[F JOQVU@TJ[F 
 NFUIPEUGJNBHF3FTJ[F.FUIPE#*$6#*$ 
 
 PGGTFU@MFGU JOQVU@TJ[FPVUQVU@TJ[F 
 PGGTFU@UPQ JOQVU@TJ[FPVUQVU@TJ[F 
 HSPVOE@USVUIUGJNBHFDSPQ@UP@CPVOEJOH@CPY DSPQQFE@JNBHF 
 PGGTFU@UPQ PGGTFU@MFGU 
 PVUQVU@TJ[F PVUQVU@TJ[F 
 
 SFUVSOMS@JNBHF HSPVOE@USVUI

Slide 58

Slide 58 text

510x510 decode_jpeg random_crop

Slide 59

Slide 59 text

όονʹ͖ͭɺ
 ϑΝΠϧͷಡΈࠐΈɾσίʔυ͕
 ճൃੜ͢Δ

Slide 60

Slide 60 text

EFG@MPBE@JNBHF GJMF@MJTU JOQVU@TJ[F PVUQVU@TJ[F DIBOOFMT TDBMF CBUDI@TJ[F 
 XJUIUGOBNF@TDPQF JNBHF@MPBEFS@WWW 
 GJMFOBNF@RVFVFUGUSBJOTUSJOH@JOQVU@QSPEVDFS GJMF@MJTU 
 TIVGGMF5SVF 
 SFBEFSUG8IPMF'JMF3FBEFS 
 @ WBMVFSFBEFSSFBE GJMFOBNF@RVFVF 
 JNBHFUGJNBHFEFDPEF@KQFH WBMVF DIBOOFMTDIBOOFMT 


Slide 61

Slide 61 text

MS@JNBHFT<>
 HSPVOE@USVUIT<>
 
 GPSJJOSBOHF CBUDI@TJ[F 
 DSPQQFE@JNBHFUGSBOEPN@DSPQ JNBHF JOQVU@TJ[F JOQVU@TJ[F DIBOOFMT 
 MS@JNBHFUGJNBHFSFTJ[F@JNBHFT DSPQQFE@JNBHF JOQVU@TJ[FTDBMF 
 JOQVU@TJ[FTDBMF 
 NFUIPEUGJNBHF3FTJ[F.FUIPE#*$6#*$ 
 MS@JNBHFUGJNBHFSFTJ[F@JNBHFT MS@JNBHF JOQVU@TJ[F JOQVU@TJ[F 
 NFUIPEUGJNBHF3FTJ[F.FUIPE#*$6#*$ 
 MS@JNBHFUGFYQBOE@EJNT MS@JNBHF EJN 
 MS@JNBHFTBQQFOE MS@JNBHF 
 
 PGGTFU@MFGU JOQVU@TJ[FPVUQVU@TJ[F 
 PGGTFU@UPQ JOQVU@TJ[FPVUQVU@TJ[F 
 HSPVOE@USVUIUGJNBHFDSPQ@UP@CPVOEJOH@CPY DSPQQFE@JNBHF 
 PGGTFU@UPQ PGGTFU@MFGU 
 PVUQVU@TJ[F PVUQVU@TJ[F 
 HSPVOE@USVUIUGFYQBOE@EJNT HSPVOE@USVUI EJN 
 HSPVOE@USVUITBQQFOE HSPVOE@USVUI 
 
 MS@JNBHFTUGDPODBU MS@JNBHFT BYJT 
 HSPVOE@USVUITUGDPODBU HSPVOE@USVUIT BYJT 
 
 SFUVSOMS@JNBHFT HSPVOE@USVUIT


Slide 62

Slide 62 text

510x510 decode_jpeg random_crop

Slide 63

Slide 63 text

MPBE@JNBHF [batch_size, height, width, channels] [height, width, channels]

Slide 64

Slide 64 text

MS@JNBHF@CBUDI HSPVOE@USVUI@CBUDIUGUSBJOTIVGGMF@CBUDI 
 
 CBUDI@TJ[F'-"(4CBUDI@TJ[F 
 DBQBDJUZDBQBDJUZ 
 FORVFVF@NBOZ5SVF 
 NJO@BGUFS@EFRVFVF'-"(4NJO@BGUFS@EFRVFVF 
 OVN@UISFBET'-"(4OVN@UISFBET 
 UGUSBJOTIV⒐F@CBUDI

Slide 65

Slide 65 text

4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 4UFQ -PTT 5JNFNTTUFQ 128 sample / batch learning rate 0.001

Slide 66

Slide 66 text

ύλʔϯ$ɿ$16ͷΦʔόʔϔου

Slide 67

Slide 67 text

·ͱΊ (16͸଎͍ɻίʔυ͕গ͠൥ࡶʹͳΔ͚ͲɺಘΒΕΔ଎͞͸ັྗ ͘͞ΒͷߴՐྗ͸շదɻଟগɺඇޮ཰తͳίʔυΛॻ͍ͯ΋ؾ͔ͮͳ͍͘Β͍ ($&ͷ(16Πϯελϯε΋଎͍ɻW$16ͷ਺ͱ͔ϝϞϦ༰ྔͱ͔ɺ՝୊ʹର͢ Δ࠷దεϖοΫΛಋ͘ϊ΢ϋ΢͕ཉ͍͠ .-&OHJOFʜʜʁ

Slide 68

Slide 68 text

Impress R&DࣾΑΓ
 Print On Demand ˍ ిࢠॻ੶Ͱ ݄̑Լ० ൃചܾఆ ݄̐̕೔ʢ೔ʣ ΞΩόɾεΫΤΞ ʰٕज़ॻయ̎ ͓ʔ̍̎ʱʹͯ TensorFlow͸͡Ί·ͨ͠
 Super Resolution ʔ ௒ղ૾ ׬ച͠·ͨ͠

Slide 69

Slide 69 text

C-LIS CO., LTD. ֤੡඼໊ɾϒϥϯυ໊ɺձ໊ࣾͳͲ͸ɺҰൠʹ֤ࣾͷ঎ඪ·ͨ͸ొ࿥঎ඪͰ͢ɻຊࢿྉதͰ͸ɺ˜ɺšɺäΛׂѪ͍ͯ͠·͢ɻ ຊࢿྉ͸ɺ༗ݶձࣾγʔϦεͷஶ࡞෺Ͱ͋ΓɺΫϦΤΠςΟϒίϞϯζͷදࣔඇӦརܧঝ6OQPSUFEϥΠηϯεͷݩͰެ։͍ͯ͠·͢ɻ