Slide 1

Slide 1 text

You Can Do Deep Learning! By William Horton

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

Image Classifier cat? dog?

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

Other applications

Slide 6

Slide 6 text

Who am I? ● Backend Engineer, Data Team at Compass ● Python ● Deep Learning

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

Let’s dive in!

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

Deep Learning

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

$ gem install rails $ rails new blog $ cd blog $ bin/rails server $ pip install Django $ django-admin startproject blog $ cd blog $ python manage.py runserver

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

Magic!

Slide 18

Slide 18 text

Deep Learning

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

Common roadblocks What about the math? Having to learn everything about everything before you even let yourself start Thinking you can’t do this because you don’t have a PhD

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

the fast.ai formula:

Slide 23

Slide 23 text

Math is important Theory is important But why not start with the knowledge and skills that you have?

Slide 24

Slide 24 text

https://cloud.google.com/blog/big-data/2016/08/how-a-japanese-cucumber-farmer-is- using-deep-learning-and-tensorflow

Slide 25

Slide 25 text

Use what you know!

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

You know how to translate ideas into working code.

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

You know how to read the documentation and source of libraries.

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

You’ve probably spent hours of your life debugging.

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

Putting it together

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

Kaggle Kernels

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

fast.ai library

Slide 39

Slide 39 text

Communities fast.ai forums Pytorch forums Kaggle discussion threads AI Saturdays Medium Twitter

Slide 40

Slide 40 text

http://tools.google.com/seedbank/

Slide 41

Slide 41 text

What can I do?

Slide 42

Slide 42 text

Near term questions What happens if I train for longer? What happens if I change the learning rate? Can I apply this to another dataset? Can I use a different architecture? What is training loss? What is validation loss?

Slide 43

Slide 43 text

Understand, implement, and explain https://medium.com/@radekosmulski/do-smoother-ar eas-of-the-error-surface-lead-to-better-generalization- b5f93b9edf5b http://teleported.in/posts/cyclic-learning-rate/

Slide 44

Slide 44 text

https://medium.com/@hortonhearsafoo/adding-a-cutting-edge-deep-learning-train ing-technique-to-the-fast-ai-library-2cd1dba90a49

Slide 45

Slide 45 text

Win an Emmy?

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

Tackle your business problems

Slide 49

Slide 49 text

Take on the giants https://www.theverge.com/2018/5/7/17316010/fast-ai-speed-test-stanford-dawnbe nch-google-intel

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

No content

Slide 52

Slide 52 text

Now get started! (And let me know: @hortonhearsafoo)

Slide 53

Slide 53 text

Image Credits Terminator: https://www.sideshowtoy.com/assets/products/300157-terminator-t-800-endoskeleton/lg/terminator-2-terminator-t-800-endoskeleton-m aquette-sideshow-300157-17.jpg Dog: https://i.ytimg.com/vi/SfLV8hD7zX4/maxresdefault.jpg Cat: https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Cat03.jpg/1200px-Cat03.jpg ImageNet graph: https://www.economist.com/special-report/2016/06/25/from-not-working-to-neural-networking Google Translate: https://translate.google.com/ AlphaGo: https://deepmind.com/research/alphago/ Compass: https://www.compass.com/ Tensorflow: screenshotted from https://www.tensorflow.org/ Coursera: from https://www.facebook.com/Coursera/ Khan Academy: https://cdn.kastatic.org/images/khan-logo-dark-background.png Kaggle: https://en.wikipedia.org/wiki/Kaggle Udacity: https://d20vrrgs8k4bvw.cloudfront.net/images/open-graph/udacity.png Roadblock: https://thesandwichedman.files.wordpress.com/2017/03/roadblock.jpg?w=519 You Shall Not Pass: https://coldcallcoach.net/donts-grappling-gatekeeper/ django: https://en.wikipedia.org/wiki/Django_(web_framework) Rails: screenshotted from https://www.youtube.com/watch?v=Gzj723LkRJY DHH: http://david.heinemeierhansson.com/images/me.jpg

Slide 54

Slide 54 text

You’re on rails: screenshotted from https://guides.rubyonrails.org/getting_started.html Magic: https://recruitingtools.com/wp-content/uploads/sites/2/2017/07/magic-wand.jpg fastai: http://www.fast.ai/ fastai video: https://www.youtube.com/watch?v=Th_ckFbc6bI fastai formula: screenshotted from http://course.fast.ai/ python: https://www.python.org/ jira ticket: http://www.taigeair.com/JIRA-Ticket mockup: https://wireframesketcher.com/sample-mockups.html keras documentation: https://keras.io/getting-started/functional-api-guide/ pytorch github: https://github.com/pytorch/pytorch stack trace: http://i45.tinypic.com/nzm99h.jpg stackoverflow: https://stackoverflow.com/ gpu: https://www.notebookcheck.net/fileadmin/_processed_/d/3/csm_GeForce_GTX_1080ti_3qtr_top_left__f25b948c6c.jpg data: http://metaltechalley.com/wp-content/uploads/2017/09/data.jpg jupyter: http://jupyter.org/assets/try/jupyter.png tensorflow: https://upload.wikimedia.org/wikipedia/commons/thumb/1/11/TensorFlowLogo.svg/2000px-TensorFlowLogo.svg.png keras: https://keras.io/ scikit-learn: https://twitter.com/scikit_learn pytorch: https://pytorch.org/ emmy nominations: http://www.emmys.com/awards/nominees-winners/2018/outstanding-creative-achievement-in-interactive-media-within-a-scripted-progr am not hotdog app: http://www.bgr.in/news/the-ridiculous-not-hotdog-app-is-real-and-here-are-6-other-apps-if-you-love-it/ not hotdog linkedin post: https://www.linkedin.com/feed/update/urn:li:activity:6423300978275082240/ dawnbench: https://dawn.cs.stanford.edu/benchmark/