Slide 1

Slide 1 text

interdisciplinary computing ~ theory and practice

Slide 2

Slide 2 text

@igorwhilefalse

Slide 3

Slide 3 text

#HackTheStigma ✊

Slide 4

Slide 4 text

interdisciplinary thinking

Slide 5

Slide 5 text

knitting ~ theorem proving

Slide 6

Slide 6 text

grammars ~ linguistics

Slide 7

Slide 7 text

finance ~ information theory

Slide 8

Slide 8 text

information theory ~ statistics

Slide 9

Slide 9 text

algorithms ~ feminism

Slide 10

Slide 10 text

code complexity ~ applied psychology

Slide 11

Slide 11 text

computation ~ formal logic

Slide 12

Slide 12 text

formal logic ~ electronics

Slide 13

Slide 13 text

electronics ~ physics

Slide 14

Slide 14 text

physics ~ information theory

Slide 15

Slide 15 text

computation ~ cosmic rays

Slide 16

Slide 16 text

Chapter I ≈ Theory

Slide 17

Slide 17 text

weaving programs

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

@sydneypadua

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

from maths to logic

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

from logic to electronics

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

• 1600: leibniz devises binary numbers • 1800: boole + de morgan supply the laws • 1937: 1-bit binary adder • 1947: transistors • 1947: error correcting codes • 1948: information theory • 1965: cosmic radiowave background • 1969: unix • 1972: c programming language

Slide 32

Slide 32 text

• 1600: leibniz devises binary numbers • 1800: boole + de morgan supply the laws • 1937: 1-bit binary adder • 1947: transistors • 1947: error correcting codes • 1948: information theory • 1965: cosmic radiowave background • 1969: unix • 1972: c programming language

Slide 33

Slide 33 text

• 1600: leibniz devises binary numbers • 1800: boole + de morgan supply the laws • 1937: 1-bit binary adder • 1947: transistors • 1947: error correcting codes • 1948: information theory • 1965: cosmic radiowave background • 1969: unix • 1972: c programming language

Slide 34

Slide 34 text

self-reference and something something quines

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

data = %q{ program = "data = %q{#{data}}" + data puts program } program = "data = %q{#{data}}" + data puts program

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

artsnfood.blogspot.com

Slide 41

Slide 41 text

Chapter II ≈ Practice

Slide 42

Slide 42 text

logic programming

Slide 43

Slide 43 text

miniKanren

Slide 44

Slide 44 text

µKanren (define (var c) (vector c)) (define (var? x) (vector? x)) (define (var=? x1 x2) (= (vector-ref x1 0) (vector-ref x2 0))) (define (walk u s) (let ((pr (and (var? u) (assp (lambda (v) (var=? u v)) s)))) (if pr (walk (cdr pr) s) u))) (define (ext-s x v s) `((,x . ,v) . ,s)) (define (== u v) (lambda (s/c) (let ((s (unify u v (car s/c)))) (if s (unit `(,s . ,(cdr s/c))) mzero)))) (define (unit s/c) (cons s/c mzero)) (define mzero '()) (define (unify u v s) (let ((u (walk u s)) (v (walk v s))) (cond ((and (var? u) (var? v) (var=? u v)) s) ((var? u) (ext-s u v s)) ((var? v) (ext-s v u s)) ((and (pair? u) (pair? v)) (let ((s (unify (car u) (car v) s))) (and s (unify (cdr u) (cdr v) s)))) (else (and (eqv? u v) s))))) (define (call/fresh f) (lambda (s/c) (let ((c (cdr s/c))) ((f (var c)) `(,(car s/c) . ,(+ c 1)))))) (define (disj g1 g2) (lambda (s/c) (mplus (g1 s/c) (g2 s/c)))) (define (conj g1 g2) (lambda (s/c) (bind (g1 s/c) g2))) (define (mplus $1 $2) (cond ((null? $1) $2) ((procedure? $1) (lambda () (mplus $2 ($1)))) (else (cons (car $1) (mplus (cdr $1) $2))))) (define (bind $ g) (cond ((null? $) mzero) ((procedure? $) (lambda () (bind ($) g))) (else (mplus (g (car $)) (bind (cdr $) g)))))

Slide 45

Slide 45 text

• ∧ conjunction • ∨ disjunction • = unification • ∃ variables

Slide 46

Slide 46 text

(run 1 (q) (== q 'hello)) ;=> (hello)

Slide 47

Slide 47 text

(run 1 (q) (== #t #f)) ;=> ()

Slide 48

Slide 48 text

(run 1 (q) (== q 'doughnut) (== q 'bagel)) ;=> ()

Slide 49

Slide 49 text

(run* (q) (conde [(== q 'doughnut)] [(== q 'bagel)])) ;=> (doughnut bagel)

Slide 50

Slide 50 text

theorem proving

Slide 51

Slide 51 text

(run* (q) (conde [(== q 'doughnut)] [(== q 'bagel)])) ∃q(doughnut(q) ∨ bagel(q))

Slide 52

Slide 52 text

∃q(doughnut(q) ∨ bagel(q)) doughnut(q) ∨ bagel(q) ------------------- doughnut(q) ∨&e1

Slide 53

Slide 53 text

∃q(doughnut(q) ∨ bagel(q)) doughnut(q) ∨ bagel(q) ------------------- bagel(q) ∨&e2

Slide 54

Slide 54 text

the never ending search for answers

Slide 55

Slide 55 text

(define nevero (conde [(== #t #f)] [nevero])) (run 1 (q) nevero)

Slide 56

Slide 56 text

run (run 1 (q) nevero)

Slide 57

Slide 57 text

run nevero (run 1 (q) nevero)

Slide 58

Slide 58 text

run nevero (define nevero (conde [(== #t #f)] [nevero]))

Slide 59

Slide 59 text

run nevero (== #t #f) (define nevero (conde [(== #t #f)] [nevero]))

Slide 60

Slide 60 text

run nevero (== #t #f) X (define nevero (conde [(== #t #f)] [nevero]))

Slide 61

Slide 61 text

run nevero (== #t #f) X nevero (define nevero (conde [(== #t #f)] [nevero]))

Slide 62

Slide 62 text

run nevero (== #t #f) X nevero (define nevero (conde [(== #t #f)] [nevero]))

Slide 63

Slide 63 text

(== #t #f) run nevero (== #t #f) X nevero (define nevero (conde [(== #t #f)] [nevero]))

Slide 64

Slide 64 text

(== #t #f) run nevero (== #t #f) X nevero X (define nevero (conde [(== #t #f)] [nevero]))

Slide 65

Slide 65 text

(== #t #f) run nevero (== #t #f) X nevero X ... (define nevero (conde [(== #t #f)] [nevero]))

Slide 66

Slide 66 text

entscheidungsproblem

Slide 67

Slide 67 text

simulating concrete machines

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

AND OR

Slide 70

Slide 70 text

AND OR NOR

Slide 71

Slide 71 text

XNOR NAND

Slide 72

Slide 72 text

XOR XOR AND OR NOR

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

(define bit-xoro (lambda (x y r) (conde ((== 0 x) (== 0 y) (== 0 r)) ((== 1 x) (== 0 y) (== 1 r)) ((== 0 x) (== 1 y) (== 1 r)) ((== 1 x) (== 1 y) (== 0 r))))) (define bit-ando (lambda (x y r) (conde ((== 0 x) (== 0 y) (== 0 r)) ((== 1 x) (== 0 y) (== 0 r)) ((== 0 x) (== 1 y) (== 0 r)) ((== 1 x) (== 1 y) (== 1 r)))))

Slide 75

Slide 75 text

(define half-addero (lambda (x y r c) (all (bit-xoro x y r) (bit-ando x y c))))

Slide 76

Slide 76 text

(define full-addero (lambda (b x y r c) (fresh (w xy wz) (half-addero x y w xy) (half-addero w b r wz) (bit-xoro xy wz c))))

Slide 77

Slide 77 text

(define +o (lambda (n m k) (addero 0 n m k))) (define -o (lambda (n m k) (+o m k n)))

Slide 78

Slide 78 text

(run* (x y) (+o x y '(1 0 1))) ;=> (((1 0 1) ()) ; (() (1 0 1)) ; ((1) (0 0 1)) ; ((0 0 1) (1)) ; ((1 1) (0 1)) ; ((0 1) (1 1)))

Slide 79

Slide 79 text

parsing grammars?!

Slide 80

Slide 80 text

flickr.com/photos/strangeloop2015/21793631118

Slide 81

Slide 81 text

No content

Slide 82

Slide 82 text

exp := var | abs | app abs := "λ" var "." exp app := "(" exp " " exp ")"

Slide 83

Slide 83 text

exp := var | abs | app abs := "λ" var "." exp app := "(" exp " " exp ")" x λx.x λx.x x (λx.x) (λx.x) ...

Slide 84

Slide 84 text

(define exp (lambda (e) (conde [(symbolo e)] [(fresh (v e2) (symbolo v) (exp e2) (== e `(λ ,v . ,e2)))] [(fresh (e1 e2) (exp e1) (exp e2) (== e `(,e1 ,e2)))])))

Slide 85

Slide 85 text

(run 10 (q) (exp q)) ;=> (x ; (λ x . x) ; (x x) ; ...)

Slide 86

Slide 86 text

society6.com/product/binary-search-tree--comp-sci-series_print

Slide 87

Slide 87 text

flickr.com/photos/drjason/280369547

Slide 88

Slide 88 text

quines

Slide 89

Slide 89 text

making use of the church-turing thesis

Slide 90

Slide 90 text

No content

Slide 91

Slide 91 text

(define eval-expo (lambda (exp env val) (conde ((fresh (v) (== `(quote ,v) exp) (not-in-envo 'quote env) (noo 'closure v) (== v val))) ((fresh (a*) (== `(list . ,a*) exp) (not-in-envo 'list env) (noo 'closure a*) (proper-listo a* env val))) ((symbolo exp) (lookupo exp env val)) ((fresh (rator rand x body env^ a) (== `(,rator ,rand) exp) (eval-expo rator env `(closure ,x ,body ,env^)) (eval-expo rand env a) (eval-expo body `((,x . ,a) . ,env^) val))) ((fresh (x body) (== `(lambda (,x) ,body) exp) (symbolo x) (not-in-envo 'lambda env) (== `(closure ,x ,body ,env) val)))))) (define not-in-envo (lambda (x env) (conde ((fresh (y v rest) (== `((,y . ,v) . ,rest) env) (=/= y x) (not-in-envo x rest))) ((== '() env))))) (define proper-listo (lambda (exp env val) (conde ((== '() exp) (== '() val)) ((fresh (a d t-a t-d) (== `(,a . ,d) exp) (== `(,t-a . ,t-d) val) (eval-expo a env t-a) (proper-listo d env t-d)))))) (define lookupo (lambda (x env t) (fresh (rest y v) (== `((,y . ,v) . ,rest) env) (conde ((== y x) (== v t)) ((=/= y x) (lookupo x rest t)))))) github.com/webyrd/quines

Slide 92

Slide 92 text

(run 1 (q) (eval-expo '((lambda (x) x) 'me!) '() q)) ;=> (me!)

Slide 93

Slide 93 text

(run 3 (q) (eval-expo q '() 'me!)) ;=> ('me! ; ((lambda (_.0) 'me!) '_.1) ; ((lambda (_.0) _.0) 'me!))

Slide 94

Slide 94 text

(run 1 (q) (eval-expo q '() q)) ;=> ((lambda (_.0) (list _.0 (list 'quote _.0))) ; '(lambda (_.0) (list _.0 (list 'quote _.0))))

Slide 95

Slide 95 text

No content

Slide 96

Slide 96 text

conclusion

Slide 97

Slide 97 text

• ∧ conjunction (implicit) • ∨ disjunction (conde) • = unification (==) • ∃ variables (fresh)

Slide 98

Slide 98 text

artsnfood.blogspot.com

Slide 99

Slide 99 text

(21) The Reasoned Schemer
 Daniel Friedman, William Byrd, Oleg Kiselyov (22) Quine Generation via Relational Interpreters
 William Byrd, Eric Holk, Daniel Friedman (23) µKanren
 Jason Hemann, Daniel Friedman (4) How to Replace Failure by a List of Successes
 Philip Wadler (7) Unspeakable Things
 Laurie Penny

Slide 100

Slide 100 text

Thanks! Questions? •minikanren.org •gif.industries •@igorwhilefalse

Slide 101

Slide 101 text

References

Slide 102

Slide 102 text

(1) Knitting for Fun: A Recursive Sweater
 Anna Bernasconi, Chiara Bodei, Linda Pagli (2) Weaving and Programming: More Related Than You (Probably) Realize!
 Allie Jones (3) From Text to Textiles!
 Lea Albaugh (4) How to Replace Failure by a List of Successes
 Philip Wadler (5) A Mathematical Theory of Communication
 Claude Shannon

Slide 103

Slide 103 text

(6) Harassed by Algorithms
 Joanne McNeil (7) Unspeakable Things
 Laurie Penny (8) Cognitive Psychology and Programming Language Design
 Ben Shneiderman (9) Gödel, Escher, Bach
 Douglas Hofstadter (10) The Annotated Turing
 Charles Petzold

Slide 104

Slide 104 text

(11) Clause and Effect
 William Clocksin (12) Code
 Charles Petzold (13) Bitsquatting
 Artem Dinaburg (14) Redis Crashes - a small rant about software reliability
 Salvatore Sanfilippo (15) The Thrilling Adventures of Lovelace and Babbage
 Sydney Padua

Slide 105

Slide 105 text

(16) Logicomix: An Epic Search for Truth
 Apostolos Doxiadis, Christos Papadimitriou (17) Pioneer Programmer
 Jean Jennings Bartik (18) The C Programming Language
 Brian Kernighan, Dennis Ritchie (19) Understanding Computation
 Tom Stuart (20) Quantum Electrodynamics
 Richard Feynman

Slide 106

Slide 106 text

(21) The Reasoned Schemer
 Daniel Friedman, William Byrd, Oleg Kiselyov (22) Quine Generation via Relational Interpreters
 William Byrd, Eric Holk, Daniel Friedman (23) µKanren
 Jason Hemann, Daniel Friedman (24) Propositions as Types
 Philip Wadler (25) Unflattening
 Nick Sousanis