Slide 1

Slide 1 text

ΦϯϥΠϯ޿ࠂʹ͓͚Δ CTR/CVRਪఆؔ܎ͷ࿦จΛ 30ຊ͘Β͍ࡶʹ঺հ͢Δ rtb-papersฤ @todesking

Slide 2

Slide 2 text

rtb-papersͱ͸ • ্ւަ௨େֶͷWeinan ZHANGॿڭत͕·ͱΊ͍ͯΔɺ ΦϯϥΠϯ޿ࠂؔ܎ͷ࿦จू • https://github.com/wnzhang/rtb-papers • δϟϯϧ͝ͱʹओཁͳ࿦จ͕·ͱ·͍ͬͯΔͷͰɺ޿ࠂܥ ͷػցֶशٕज़ͷೖ໳ʹ͓͢͢Ί • ࠓճ͸CTR/CVRਪఆʹؔ͢Δ࿦จΛ঺հ͠·͢

Slide 3

Slide 3 text

CTR/CVRਪఆ • Click Through Rate/Conversion Rate • ޿ࠂΛݟͨͱ͖ͷϢʔβͷԠ౴Λ༧ଌ͢ΔͷͰɺ·ͱΊͯ user response predictionͱ͔ݺ͹ΕΔ • ޿ࠂͷΫϦοΫ/ίϯόʔδϣϯ(঎඼ͷߪೖͳͲɺͦͷ޿ ࠂ͕ୡ੒͍ͨ͠໨త)Λ༧ଌ͢ΔλεΫ • యܕྫ: WebϖʔδpʹϢʔβu͕དྷ๚ͨ͠ɻ޿ࠂaΛදࣔ ͨ͠৔߹ɺΫϦοΫ/ίϯόʔδϣϯ͕ൃੜ͢Δ֬཰͸͍ ͘Β͔ • ಛ௃ྔ͸ΧςΰϦΧϧσʔλ͕ଟ͍

Slide 4

Slide 4 text

CTR/CVRਪఆ • ҰൠతʹɺCVRਪఆͷ΄͏͕೉͍͠ • ਖ਼ྫ͕গͳ͍ • ΫϦοΫ཰Ͱ΋~1%ఔ౓ɺCVR͸͞Βʹ௿͍ • CVͷఆٛ͸ଟ༷ • ಛఆϖʔδ΁ͷΞΫηε͔Β঎඼ͷߪೖ·Ͱ༷ʑ • ΞτϦϏϡʔγϣϯϞσϧ • ෳ਺ͷimp/clickͷޙCVͨ͠৔߹ɺͲͷimpͷ੒Ռʹ͢Δ͔ • ͍Ζ͍ΖͳϞσϧ͕͋Δ(࠷ޙʹΫϦοΫ͞Εͨ΋ͷΛ࠾༻ɺෳ਺ͷ impʹ੒ՌΛ෼഑) • ஗ԆϑΟʔυόοΫ • imp ʙ click͸͍͍ͤͥ਺෼͕ͩɺCV͢Δʹ͸΋ͬͱ௕͍͕͔͔࣌ؒΔ • ʮෛྫʯͱʮCVσʔλະ౸ணʯͷݟ෼͚͕͔ͭͳ͍

Slide 5

Slide 5 text

Evaluating and Optimizing Online Advertising: Forget the click, but there are good proxies by Brian Dalessandro et al. SSRN 2012. • "ΦϯϥΠϯ޿ࠂͷධՁͱ࠷దԽ: ΫϦοΫΑΓྑ͍୅ସࢦඪ" • ͋Δϒϥϯυͷ޿ࠂΛݟͨਓ͕7೔Ҏ಺ʹͦͷϒϥϯυͷ঎඼Λങ ͏͔Λ༧ଌ͢Δέʔε • CVσʔλ͸εύʔεա͗ͯେม • ؆୯ʹखʹೖͬͯɺCVͱ૬͕ؔ͋ΔΑ͏ͳ୅ସࢦඪ(proxy)͕͋Δ ͱخ͍͠ • ௚ײతʹ͸ΫϦοΫ͕୅ସͱͳΓͦ͏͕ͩɺ࣮͸΄΅ؔ܎ͳ͍ • ΫϦΤΠςΟϒͷσβΠϯ͕ΫϦοΫ࠷దԽΛ໨తͱ͍ͯ͠Δ ͔ΒͰ͸? • ͦͷ୅ΘΓʹɺϒϥϯυαΠτ΁ͷ๚໰͸Α͍୅ସࢦඪͱͳΔ

Slide 6

Slide 6 text

Estimating Conversion Rate in Display Advertising from Past Performance Data by Kuang-chih Lee et al. KDD 2012. • "աڈͷύϑΥʔϚϯεσʔλ͔ΒͷCVRਪఆ" • ϢʔβɺWebϖʔδɺ޿ࠂͷ૊Έ߹Θ͔ͤΒCVRΛ༧ଌ͢ Δ • ͦΕͧΕΛ֊૚తʹ෼ׂͯ͠աڈͷύϑΥʔϚϯεΛूܭ • ϩδεςΟοΫճؼͰͦΕΒΛ౷߹ͯ͠CVR༧ଌ

Slide 7

Slide 7 text

Ad Click Prediction: a View from the Trenches by H. Brendan McMahan. KDD 2013. • "ΫϦοΫਪఆ: ᆠߺ͔ΒͷோΊ" • Google • େن໛ͳCTR༧ଌϞσϧͷӡ༻͔ΒಘΒΕͨ஌ݟͷ঺հ • ϩδεςΟοΫճؼͷΦϯϥΠϯֶश(FTRL-Proximal, Per- coordinate learning rates) • ϝϞϦઅ໿ͷٕ๏ • ϞσϧධՁख๏ • ༧ଌͷ৴པ౓Λද͢uncertainty score • ༧ଌͷΩϟϦϒϨʔγϣϯ • ಛ௃ྔͷ؅ཧ • ͏·͍͔͘ͳ͔ٕͬͨ๏

Slide 8

Slide 8 text

Practical Lessons from Predicting Clicks on Ads at Facebook by Xinran He et al. ADKDD 2014. • "Facebookʹ͓͚ΔΫϦοΫ༧ଌ͔Βͷڭ܇" • GBDTͷ݁ՌΛઢܗճؼͰ࢖͏stackingϞσϧ • ઢܗճؼ͸LRͱBOPR • BOPR: Bayesian online learning scheme for probit regression • σʔλ઱౓͕ॏཁͳͷͰΦϯϥΠϯֶश͢Δ • Online joiner: ϩάσʔλΛΦϯϥΠϯֶशػʹ৯Θͨ͢ ΊͷγεςϜ • ϞσϧαΠζͷ࡟ݮ • ֶशσʔλͷμ΢ϯαϯϓϦϯά

Slide 9

Slide 9 text

Modeling Delayed Feedback in Display Advertising by Olivier Chapelle. KDD 2014. • "σΟεϓϨΠ޿ࠂʹ͓͚Δ஗ԆϑΟʔυόοΫϞσϦϯ ά" • Criteo • CV͸impޙ௕࣌ؒܦ͔ͬͯΒൃੜ͢Δ • ͜ͷ஗ԆΛߟྀͨ͠CV༧ଌϞσϧΛ࡞ͬͨ

Slide 10

Slide 10 text

Scalable Hands-Free Transfer Learning for Online Advertising by Brian Dalessandro et al. KDD 2014. • "ΦϯϥΠϯ޿ࠂʹ͓͚Δεέʔϥϒϧͳख͍ؒΒͣసҠֶश" • DistilleryͷCVR༧ଌγεςϜ • Ωϟϯϖʔϯ͝ͱʹϞσϧ͕͋Δ • ίʔϧυελʔτ໰୊ɺCVͷଟ༷ੑɺϝϯςͷखؒͳͲͷ໰ ୊ʹରॲ • Bayesian transfer learning: ࣄલ෼෍ʹΑΓίʔϧυελʔτ Λ؇࿨ • ϋΠύʔύϥϝʔλෆཁͳSGD LR(NoPesky learning rates + Adaptive regularization)

Slide 11

Slide 11 text

Scalable Hierarchical Multitask Learning Algorithms for Conversion Optimization in Display Advertising by Amr Ahmed et al. WSDM 2014. • "CV࠷దԽͷͨΊͷεέʔϥϒϧͳ֊૚ϚϧνλεΫֶश" • Google • ؔ࿈ͨ͠໰୊͸·ͱΊͯղ͍ͨ΄͏͕ੑೳ͕ྑ͍ • CV(attributed/non-attributed)ɺΫϦοΫΛҰ౓ʹ༧ଌ͢Δ Ϟσϧ • Multitask-learning • ֊૚తͳ֬཰ϞσϧͰΩϟϯϖʔϯɾλεΫؒͷґଘΛදݱ • ֊૚ϚϧνλεΫֶशΛ෼ࢄॲཧͰεέʔϧͤ͞Δ࿩

Slide 12

Slide 12 text

Predicting Response in Mobile Advertising with Hierarchical Importance-Aware Factorization Machine by Richard J. Oentaryo et al. WSDM 2014. • "֊૚తImportance-aware FMʹΑΔϞόΠϧ޿ࠂͷϨεϙϯε ༧ଌ" • Λਪఆ͍ͨ͠(Ͳ͏͍͏ঢ়گઃఆ??) • page, adʹ͸֊૚ߏ଄͕͋Δ • ֊૚ͷ֤ϊʔυʹରԠ͢ΔॏΈΛਖ਼ଇԽͰ੍ޚ(ಉ͡਌ʹଐ͢ ΔϊʔυͷॏΈ͸͍ۙ) • ֊૚͝ͱʹू໿ֶͨ͠शσʔλΛ࡞Γɺαϯϓϧͷଟ͞Λॏཁ ౓ͱͯ͠ॏΈ෇ֶ͚ͯ͠श • Ͳ͔ͬͰtemporal dynamicsΛߟྀͯ͠ΔΒ͍͕͠ݟࣦͬͨ P(click|page, ad, day)

Slide 13

Slide 13 text

Simple and Scalable Response Prediction for Display Advertising by Olivier Chapelle Criteo, Eren Manavoglu, Romer Rosales. ACM TIST 2014. • "σΟεϓϨΠ޿ࠂʹ͓͚ΔγϯϓϧͰεέʔϥϒϧͳԠ౴༧ଌ" • Criteo+MS+LinkedIn • LRͰCTR/CVR͢Δ࿩ • Bayesian LRͰThompson sampling͢Δ࿩୊΋

Slide 14

Slide 14 text

Offline Evaluation of Response Prediction in Online Advertising Auctions by Olivier Chapelle. WWW 2015. • "ΦϯϥΠϯ޿ࠂΦʔΫγϣϯʹ͓͚ΔԠ౴༧ଌͷΦϑϥ ΠϯධՁ" • Criteo • CTRਪఆͷධՁͱͯ͠͸Ұൠతͳڭࢣ෇ֶ͖शͷࢦඪ͕࢖ ΘΕ͍ͯΔ͕ɺਪఆ݁Ռ͕Ͳ͏࢖ΘΕΔͷ͔ߟ͑Δ΂͖ • ਪఆͨ͠CTRʹΑͬͯbidՁ֨ΛܾΊΔγφϦΦʹ͓͚Δ ධՁࢦඪͱͯ͠expected utility[5]ΛఏҊɺ࣮σʔλͰݕূ

Slide 15

Slide 15 text

Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction by Weinan Zhang, Tianming Du, Jun Wang. ECIR 2016. • "ϚϧνϑΟʔϧυΧςΰϦΧϧσʔ λͷਂ૚ֶश: ϢʔβԠ౴ਪఆͷࣄྫ" • ը૾΍Ի੠ͱҟͳΓɺ޿ࠂͰ࢖͏ σʔλ͸ෳ਺ϑΟʔϧυͷΧςΰϦΧ ϧ஋ • ͜ΕΒͷަޓ࡞༻ͷ͏ͪ༗ޮͳ΋ͷ ΛࣗಈͰൃݟ͍ͨ͠ • Factorization Machine supported NN ͓Αͼ Sampling-based NNͱ͍͏Ϟ σϧΛఏҊ

Slide 16

Slide 16 text

Factorization Machines with Follow-The- Regularized-Leader for CTR prediction in Display Advertising by Anh-Phuong Ta. BigData 2015. • "FMͱFTRLʹΑΔCTRਪఆ" • ΦϯϥΠϯ࠷దԽΞϧΰϦζϜͰ͋ΔFTRL-ProximalΛ FMʹద༻ͨ͠FTRFL(Follow-The-Regularized-Factorized- Leader)ͷఏҊ • FMͷΦϯϥΠϯֶश͕ߴ଎+ߴੑೳʹͳͬͨ

Slide 17

Slide 17 text

A Convolutional Click Prediction Model by Qiang Liu, Feng Yu, Shu Wu, Liang Wang. CIKM 2015. • "৞ΈࠐΈΫϦοΫ༧ଌϞσϧ" • imp୯ମͰ͸ͳ͘ܥྻΛ࢖ͬͯCTR༧ଌ͢ΔϞσϧ • impͷܥྻʹରԠ͢Δಛ௃ྔΛೖྗɺ৞ΈࠐΈ͢Δ

Slide 18

Slide 18 text

Cost-sensitive Learning for Utility Optimization in Online Advertising Auctions by Flavian Vasile, Damien Lefortier, Olivier Chapelle. Extension under-review of the paper presented at the Workshop on E-Commerce, NIPS 2015. • "ίετΛߟֶྀͨ͠शʹΑΔΦϯϥΠϯ޿ࠂͷutility࠷దԽ" • Criteo+FB+Google • CTRਪఆͷੑೳ͸utilityͰଌΔͷ͕࣮৘ʹ߹͍ͬͯΔ • ͩͬͨΒ࠷ॳ͔ΒutilityΛ࠷దԽ͍ͨ͠ • ॏΈ෇͖log lossΛ࠷దԽ͢Δ͜ͱͰۙࣅతʹutilityΛ࠷దԽ Ͱ͖Δ • ղઆ: https://k11i.biz/blog/2017/08/15/2017-adkdd-criteo/

Slide 19

Slide 19 text

User Response Learning for Directly Optimizing Campaign Performance in Display Advertising by Kan Ren, Weinan Zhang, Yifei Rong, Haifeng Zhang, Yong Yu, Jun Wang. CIKM 2016. • "ΩϟϯϖʔϯͷύϑΥʔϚϯεΛ௚઀࠷దԽ͢ΔͨΊͷ ϢʔβԠ౴ͷֶश" • CTR༧ଌϞσϧ͸޿ࠂ഑৴γεςϜͷҰ෦Ͱ͋Δ • Ϟσϧ୯ମΛ࠷దԽ͢ΔΑΓɺγεςϜશମΛ࠷దԽͨ͠ ͍ • LRʹΑΔCTR༧ଌΛؚΉ഑৴γεςϜΛϞσϧԽ͠ɺ ΩϟϯϖʔϯͷརӹΛ௚઀࠷దԽͨ͠ • A/BςετͰ΋޷੒੷

Slide 20

Slide 20 text

Predicting ad click-through rates via feature-based fully coupled interaction tensor factorization by Lili Shan, Lei Lin, Chengjie Sun, Xiaolong Wang. Electronic Commerce Research and Applications 2016. • "Feature-based fully coupled interaction tensor factorizationʹΑ ΔCTR༧ଌ" • (Ϣʔβ, Webϖʔδ, ޿ࠂ)Λςϯιϧͱͯ͠දݱɺCTRਪఆΛς ϯιϧิ׬໰୊ͱͯ͠ղ͘ • Fully-Coupled interactions Tensor Factorizationͱ͍͏ΞϧΰϦζ ϜΛఏҊ

Slide 21

Slide 21 text

Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising by Weinan Zhang, Tianxiong Zhou, Jun Wang, Jian Xu. KDD 2016. • "ܽଛͷ͋ΔσʔλͷͨΊͷೖࡳߟྀܕޯ഑߱Լ๏ʹΑΔ όΠΞεͳֶ͠श" • RTB޿ࠂʹ͓͍ͯɺCTRਪఆʹ࢖ΘΕΔσʔλ͔Β͸ʮམ ࡳͰ͖ͳ͔ͬͨimpʯ͕ܽམ͍ͯ͠Δ(Censored data) • ੜଘ෼ੳΛద༻ͯ͠ɺ͜ΕΒͷܽଛΛߟྀͨ͠SGDΛՄ ೳʹ͢Δख๏ͷఏҊ

Slide 22

Slide 22 text

Deep CTR Prediction in Display Advertising by Junxuan Chen et al. MM 2016. • "ਂ૚CTRਪఆ" • Alibaba • ඪ४తͳಛ௃ྔʹՃ͑ͯόφʔը૾Λ࢖༻ͨ͠CTRਪఆ

Slide 23

Slide 23 text

Sparse Factorization Machines for Click- through Rate Prediction by Zhen Pan et al. ICDM 2016. • "εύʔεFMʹΑΔCTR༧ଌ" • CTRਪఆʹ࢖͏σʔλ͸ඇৗʹεύʔε • ͜ͷΑ͏ͳσʔλʹରԠͨ͠Sparse Factorization MachinesͷఏҊ • ύϥϝʔλͷ෼෍ͱͯ͠ਖ਼ن෼෍ͷ͔ΘΓʹϥϓϥε෼෍ Λ࢖༻(εύʔεσʔλʹڧ͍) • Spark্Ͱͷ෼ࢄֶशΛ࣮૷

Slide 24

Slide 24 text

Product-based Neural Networks for User Response Prediction by Yanru Qu et al. ICDM 2016. • "ProductϕʔεNNʹΑΔϢʔβԠ౴༧ଌ" • Product layerʹ͓͍ͯɺ಺ੵ/֎ੵΛ࢖ͬͯಛ௃ྔͷม׵Λ͍ͯ͠Δ

Slide 25

Slide 25 text

Field-aware Factorization Machines in a Real- world Online Advertising System by Yuchin Juan, Damien Lefortier, Olivier Chapelle. ArXiv 2017. • "ΦϯϥΠϯ޿ࠂγεςϜʹ͓͚ΔFFM" • ࣮γεςϜͷCTR/CVR༧ଌʹFFMΛಋೖͨ͠ • ෼ࢄֶश • ϞσϧΛ࠶ֶश͢Δͱ͖ʹաڈͷύϥϝʔλΛ࠶ར༻͢Δ warm-startingख๏

Slide 26

Slide 26 text

Neural Feature Embedding for User Response Prediction in Real-Time Bidding (RTB) by Enno Shioji, Masayuki Arai. ArXiv 2017. • "ϢʔβԠ౴ਪఆͷͨΊͷχϡʔϥϧຒΊࠐΈ" • Ϣʔβͷಛ௃Λදݱͨ͠෼ࢄදݱΛ࡞Γ͍ͨ • ϢʔβͷӾཡཤྺΛݩʹɺwebϖʔδΛ୯ޠͱݟͳͯ͠ CBOWͰϕΫτϧԽ • Ϣʔβ͕Ӿཡͨ͠ίϯςϯπͷϕΫτϧΛ౷߹ͯ͠Ϣʔβ ͷຒΊࠐΈΛಘΔ(ਖ਼نԽ+ฏۉ) • ྨࣅ: Tagami, Yukihiro, Hayato Kobayashi, Shingo Ono and Akira Tajima. “Distributed Representations of Web Browsing Sequences for Ad Targeting.” (2016).

Slide 27

Slide 27 text

SEM: A Softmax-based Ensemble Model for CTR Estimation in Real-Time Bidding Advertising by Wen-Yuan Zhu et al. BigComp 2017. • "SEM: SoftmaxϕʔεΞϯαϯϒϧϞσϧʹΑΔCTRਪఆ" • ಛ௃ྔ͕ΧςΰϦΧϧσʔλͷ৔߹ɺtest࣌ʹॳΊͯग़Δ ஋͸ແࢹ͞ΕΔͱ͍͏໰୊ • Hashing trickͰಛ௃ྔΛϕΫτϧԽˠࣗಈಛ௃ྔબ୒ˠಛ ௃ྔ͝ͱʹφΠʔϒϕΠζͯ͠Softmax • ৽ن஋໰୊͕hashing trickͰղܾ͢Δͱ͍͏ओு͸Θ͔Β ͳ͍Ͱ͢Ͷ…… • શମతʹṖ

Slide 28

Slide 28 text

Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction by Kun Gai, Xiaoqiang Zhu, Han Li, et al. Arxiv 2017. • "CTR༧ଌͷͨΊͷPeace-wiceઢܕϞσϧͷେن໛ֶश" • Alibaba • 2012೥ҎདྷAlibabaͰ࢖ΘΕ͍ͯΔCTR༧ଌϞσϧ • Linear Modelͱݴ͍ͭͭඇઢܗͳݱ৅Λѻ͑Δ • ಛ௃ۭؒΛ෼ׂ͠ɺྖҬ͝ͱʹઢܕϞσϧΛద༻͢Δ • େن໛σʔλͷֶशʹ଱͑Δ σ: dividing function η: fitting function

Slide 29

Slide 29 text

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction by Huifeng Guo et al. IJCAI 2017 • "DeppFM: CTR༧ଌͷͨΊͷFMϕʔεNN" • ಛ௃ΤϯδχΞϦϯάෆཁͱ͔ڧ͍͜ͱ͕ॻ͍ͯ͋Δ • Wide and Deepͷൃలܥ • ୯ମͷಛ௃ྔ΋ߴ࣍ͷަޓ࡞༻΋େࣄʹ͍ͨ͠ͱ͍͏ؾ࣋ͪ • ղઆ: https://data.gunosy.io/entry/deep-factorization-machines-2018

Slide 30

Slide 30 text

Deep Interest Network for Click-Through Rate Prediction by Guorui Zhou et al. ArXiv 2017. • "CTRਪఆͷͨΊͷDeep Interest Network" • Alibaba • ϢʔβͷߦಈཤྺΛݩʹCTRਪఆ͍ͨ͠ • ࣌ܥྻσʔλΛݩʹɺϢʔβͷࠓͷঢ়ଶΛϞσϦϯά͢Δ

Slide 31

Slide 31 text

An Ensemble-Based Approach to Click- Through Rate Prediction for Promoted Listings at Etsy by Kamelia Aryafar et al. ADKDD 2017. • "EtsyͷϦεςΟϯά޿ࠂʹ͓͚ΔΞϯαϯϒϧϕʔεCTRਪఆ" • ΦϯϥΠϯγϣοϐϯάαΠτEtsyʹ͓͚ΔCTR༧ଌ • ϩδεςΟοΫճؼ+FTRL-Proxima • ෳ਺ͷํ๏ͰCTRΛਪఆͯ͠ϩδεςΟοΫճؼͰ݁߹ • աڈσʔλΛεϜʔδϯάͯ͠ਪఆͨ͠CTR(σʔλ͕ଟ͍ͱྑ͘ ޮ͘) • ςΩετσʔλ͸unigram/bigramΛhashing trickͯ͠ϕΫτϧԽ • ը૾͸DNNͰຒΊࠐΈ

Slide 32

Slide 32 text

A Practical Framework of Conversion Rate Prediction for Online Display Advertising by Quan Lu et al. ADKDD 2017. • CVR༧ଌʹؔ͢Δ༷ʑͳख๏ͷఏҊ • Over prediction΁ͷରԠ • delayed feedbackΛߟֶྀͨ͠श • ΞτϦϏϡʔγϣϯϞσϧΛߟྀͨ͠ೖࡳֹิਖ਼

Slide 33

Slide 33 text

Ranking and Calibrating Click-Attributed Purchases in Performance Display Advertising by Sougata Chaudhuri et al. ADKDD 2017. • click-attributionͰCV՝ۚϞσϧͷ޿ࠂ഑৴ • bidͷࡍʹ͸ҎԼͷखॱ͕ඞཁ • CV͞Ε΍͍͢޿ࠂͷީิΛྻڍ(ΞτϦϏϡʔγϣϯͷ੍໿ ͰɺΫϦοΫ཰΋ߴ͍ඞཁ͕͋Δ) • CV཰ʹԠͯ͡ೖࡳֹۚΛܾఆ(ਖ਼֬ͳCV཰ͷਪఆ͸ࠔ೉) • ϥϯΩϯά+ΩϟϦϒϨʔγϣϯʹΑͬͯ͜ͷ໰୊Λղ͘

Slide 34

Slide 34 text

Deep & Cross Network for Ad Click Predictions by Ruoxi Wang et al. ADKDD & TargetAd 2017. • Google • Deep & Cross NetworkϞσ ϧͷఏҊ • ߴ࣍ͷަޓ࡞༻Λཅʹѻ͏ ωοτϫʔΫ(Cross)Λ࣋ͭ

Slide 35

Slide 35 text

Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising by Junwei Pan et al. WWW 2018. • Field-aware FM͸ੑೳ͍͍͕ύϥϝʔλ਺ଟա͗ͳͷͰվ ળͨ͠ • ղઆ: https://www.smartbowwow.com/2019/06/field- weighted-factorization-machines.html

Slide 36

Slide 36 text

Robust Factorization Machines for User Response Prediction by Surabhi Punjabi and Priyanka Bhatt. WWW 2018. • Webͷಛੑ্ɺϢʔβΛਖ਼֬ʹࣝผͰ͖ͳ͍ • ผΞϓϦ/σόΠε͔ΒͷΞΫηε • CookieແޮԽ • ϩόετ࠷దԽͱݺ͹ΕΔख๏ΛFMʹద༻ɺֶशσʔλ ͷϊΠζʹڧ͍ϞσϧΛಘΒΕͨ • ஶऀʹΑΔղઆ: https://medium.com/@priyankabhatt91/ robust-factorization-machines-b44e2d906f15

Slide 37

Slide 37 text

A Nonparametric Delayed Feedback Model for Conversion Rate Prediction by Yuya Yoshikawa and Yusaku Imai. ArXiv 2018. • CVRਪఆʹ͓͍ͯ͸ɺϑΟʔυόοΫͷ஗Ԇ͕໰୊ʹͳΔ • imp͔ͯ͠Β௕࣌ؒ଴ͨͳ͍ͱCV͢Δ͔Ͳ͏͔Θ͔Βͳ͍ • ਖ਼ֶ͍͠शͷͨΊʹ͸࣌ؒ஗Εͷ෼෍Λਪఆ͢Δඞཁ͕͋Δ͕ɺ ಛఆͷ෼෍ΛԾఆͤͣϊϯύϥϝτϦοΫʹ΍Γ͍ͨ • CVRਪఆϞσϧʹϊϯύϥ஗ԆϞσϧΛ૊ΈࠐΜͩख๏ΛఏҊ • ೔ຊޠ: https://www.jstage.jst.go.jp/article/pjsai/JSAI2018/0/ JSAI2018_1N202/_article/-char/ja/

Slide 38

Slide 38 text

·ͱΊ • CTR/CVR༧ଌ͸جຊతʹେن໛ͳςʔϒϧσʔλ • εέʔϥϏϦςΟ΍ަޓ࡞༻ͷදݱͳͲ͕ॏཁ • Ϟσϧ͸LR͕جຊɺަޓ࡞༻Λѻ͑ΔFM͕҆ఆ • ۙ೥͸ը૾΍࣌ܥྻσʔλɺΑΓෳࡶͳަޓ࡞༻Λѻ͏ͨ ΊDNNͷಋೖ΋