Slide 54
Slide 54 text
GP provides a systematic and
tractable framework for various
machine learning problems
Complete probabilistic predictions in
GPs - confidence interval, etc.
GP extendable to hierarchical
formulation
In GP covariance matrices are not
sparse - O(N3) complexity for matrix
inversion - approximate methods
essential for large data-sets
Summary
C. E. Rasmussen and C. K. I. Williams. Gaussian processes for
machine learning, MIT press Cambridge, 2006.
K. P. Murphy. Machine Learning: A Probabilistic Perspective
MIT press Cambridge, 2012.
N. D. Lawrence. Gaussian process latent variable models for
visualisation of high dimensional data, 2004.
D. J. C. MacKay. Information theory, inference and learning
algorithms. Cambridge University Press, 2003.
http://www.gaussianprocess.org/