Whenever Brad is
drinking, you wanna
make sure you're sitting
next to him, because
instead of being
obnoxious, he teaches
you orbital mechanics.
Ashe Dryden
Slide 3
Slide 3 text
Whenever Brad is
drinking, you wanna
make sure you're sitting
next to him, because
instead of being
obnoxious, he teaches
you orbital mechanics.
Ashe Dryden
GET YOUR
ALTERCONF
TICKETS!
Slide 4
Slide 4 text
PREFACE
PREREQUISITES
Slide 5
Slide 5 text
PREFACE
PREREQUISITES
▸ Buy KSP ($40 on Steam)
Slide 6
Slide 6 text
PREFACE
PREREQUISITES
▸ Buy KSP ($40 on Steam)
$24
PREFACE
PREREQUISITES
▸ Buy KSP ($40 on Steam)
▸ Install ckan
▸ Install kRPC on ckan
$24
Slide 9
Slide 9 text
PREFACE
PREREQUISITES
▸ Buy KSP ($40 on Steam)
▸ Install ckan
▸ Install kRPC on ckan
▸ EMA 550: Astrodynamics
$24
Slide 10
Slide 10 text
PREFACE
PREREQUISITES
▸ Buy KSP ($40 on Steam)
▸ Install ckan
▸ Install kRPC on ckan
▸ EMA 550: Astrodynamics
▸ ME 446: Automatic Controls
$24
Slide 11
Slide 11 text
PREFACE
PREREQUISITES
▸ Buy KSP ($40 on Steam)
▸ Install ckan
▸ Install kRPC on ckan
▸ EMA 550: Astrodynamics
▸ ME 446: Automatic Controls
▸ Install ruby correctly #%&!
$24
Slide 12
Slide 12 text
PREFACE
PREREQUISITES
▸ Buy KSP ($40 on Steam)
▸ Install ckan
▸ Install kRPC on ckan
▸ EMA 550: Astrodynamics
▸ ME 446: Automatic Controls
▸ Install ruby correctly #%&!
▸ gem install krpc
$24
Slide 13
Slide 13 text
PREFACE
PREREQUISITES
▸ Buy KSP ($40 on Steam)
▸ Install ckan
▸ Install kRPC on ckan
▸ EMA 550: Astrodynamics
▸ ME 446: Automatic Controls
▸ Install ruby correctly #%&!
▸ gem install krpc
▸ Write some ruby
$24
Slide 14
Slide 14 text
SPACE.FAIL:3000
Slide 15
Slide 15 text
PROJECT 1:
MERCURY
HOVER
Slide 16
Slide 16 text
MAKE A ROCKET
HOVER
PROBLEM STATEMENT:
Slide 17
Slide 17 text
MAKE A ROCKET
HOVER
PROBLEM STATEMENT:
MAKE ALTITUDE CONSTANT
(AND SUFFICIENTLY >0)
Slide 18
Slide 18 text
MAKE A ROCKET
HOVER
PROBLEM STATEMENT:
MAKE ALTITUDE CONSTANT
(AND SUFFICIENTLY >0)
1 CONTROL: THROTTLE
(ALSO, VARIABLE MASS)
Slide 19
Slide 19 text
PROJECT 1: MERCURY
SOME MATHS
F = m⋅a
∑
T − m⋅ g = m⋅a
T − m⋅ g = m⋅ d
dt
v
T − m⋅ g = m⋅ d2
dt2
x
T(t) − m(t)⋅ g = m(t)⋅ d2
dt2
x(t)
Slide 20
Slide 20 text
PROJECT 1: MERCURY
SOME MATHS
F = m⋅a
∑
T − m⋅ g = m⋅a
T − m⋅ g = m⋅ d
dt
v
T − m⋅ g = m⋅ d2
dt2
x
T(t) − m(t)⋅ g = m(t)⋅ d2
dt2
x(t)
Nonlinear 2nd Order
Differential Equation
Slide 21
Slide 21 text
PROJECT 1: MERCURY
SOME MATHS
F = m⋅a
∑
T − m⋅ g = m⋅a
T − m⋅ g = m⋅ d
dt
v
T − m⋅ g = m⋅ d2
dt2
x
T(t) − m(t)⋅ g = m(t)⋅ d2
dt2
x(t)
Nonlinear 2nd Order
Differential Equation
ಠ_ಠ
MAKE A ROCKET
ORBIT
PROBLEM STATEMENT:
GO REAL HIGH,
THEN ON THE WAY BACK DOWN,
MISS
Slide 35
Slide 35 text
OUR ROCKET
Slide 36
Slide 36 text
First Stage
OUR ROCKET
Slide 37
Slide 37 text
OUR ROCKET
Second Stage
}
Slide 38
Slide 38 text
OUR ROCKET
Third Stage
}
Slide 39
Slide 39 text
ORBIT?
Slide 40
Slide 40 text
ORBIT?
Slide 41
Slide 41 text
ORBIT?
Slide 42
Slide 42 text
ORBIT?
Slide 43
Slide 43 text
ORBIT?
Slide 44
Slide 44 text
ORBIT?
Slide 45
Slide 45 text
ORBIT?
1 foot
Austin
Houston
Slide 46
Slide 46 text
ORBIT?
1 foot
Austin
Houston
d = 237km
Slide 47
Slide 47 text
ORBIT?
1 foot
Austin
Houston
d = 237km
h = 4.41km
Slide 48
Slide 48 text
ORBIT?
1 foot
Austin
Houston
d = 237km
h = 4.41km
t = 30s
Slide 49
Slide 49 text
ORBIT?
1 foot
Austin
Houston
d = 237km
h = 4.41km
t = 30s
v = 7.9km/s
Slide 50
Slide 50 text
ENERGIES
Slide 51
Slide 51 text
ENERGIES
Get up there
m g h = E
g h = E/m
(9.81/1000) 200
1.96 MJ
Slide 52
Slide 52 text
ENERGIES
Get up there
m g h = E
g h = E/m
(9.81/1000) 200
1.96 MJ
Go real fast
E = ½ m v2
E/m = ½ v2
½ (7.8)2
30.4 MJ
Slide 53
Slide 53 text
PROJECT 2: GEMINI
OK, BUT HOW?
▸ Checklist!
▸ 2 state machines: staging & control
▸ On each tick, use case-when for each state machine
▸ On each state-transition, maybe do a single thing
▸ "Pitch over while managing stages"
Slide 54
Slide 54 text
DEMO
Slide 55
Slide 55 text
PROJECT 3:
APOLLO
TO THE MUN!
Slide 56
Slide 56 text
LAND A ROCKET
ON THE MUN
PROBLEM STATEMENT:
Slide 57
Slide 57 text
LAND A ROCKET
ON THE MUN
PROBLEM STATEMENT:
LANDING SPEED UNSPECIFIED;
LEFT TO DEVELOPER
Slide 58
Slide 58 text
ORBIT TRANSFERS
Slide 59
Slide 59 text
ORBIT TRANSFERS
Slide 60
Slide 60 text
ORBIT TRANSFERS
Slide 61
Slide 61 text
ORBIT TRANSFERS
Slide 62
Slide 62 text
TO THE MUN
Slide 63
Slide 63 text
TO THE MUN
Slide 64
Slide 64 text
PROJECT 3: APOLLO
STATES
1. determining insertion burn delta v
2. determining insertion burn location
3. waiting for insertion burn far
4. waiting for insertion burn mid
5. waiting for insertion burn near
6. insertion burning
7. finalizing insertion burn
8. transmunar orbit
9. outer munar orbit
10.mid munar orbit
11.final approach