Slide 1

Slide 1 text

͘͞ΒΠϯλʔωοτגࣜձࣾ (C) Copyright 1996-2019 SAKURA Internet Inc ͘͞ΒΠϯλʔωοτݚڀॴ ΞχʔϦϯάϚγϯΛ׆༻ͨ͠ΤοδAIʹ͓͚Δ ੜ੒Ϟσϧͷֶशޮ཰ԽͷͨΊͷΞʔΩςΫνϟ 2019/12/06 ϚϧνϝσΟΞɺ෼ࢄɺڠௐͱϞόΠϧʢDICOMO2020ʣγϯϙδ΢Ϝ ɹ௽ా തจɼদຊ ྄հ ͘͞ΒΠϯλʔωοτגࣜձࣾ ͘͞ΒΠϯλʔωοτݚڀॴ

Slide 2

Slide 2 text

2 1. എܠͱ໨త 2. ΤοδAIʹ͓͚Δੜ੒Ϟσϧͷ׆༻ͱ՝୊ 3. ఏҊ͢ΔΞʔΩςΫνϟ 4. ධՁͱߟ࡯ 5. ·ͱΊ ໨࣍

Slide 3

Slide 3 text

1. എܠͱ໨త

Slide 4

Slide 4 text

4 ΤοδAI • IoTσόΠε͕ීٴʹ൐͍ɼσόΠε͔Βੜ੒͞ΕΔσʔλྔ͕ٸ଎ʹ૿Ճ͍ͯ͠Δɽ • IoTσόΠε͕ੜ੒͢Δଟछଟ༷ͳσʔλΛ׆༻ͨ͠՝୊ղܾͷΞϓϩʔνͱͯ͠ɼ ਓ޻஌ೳ(AI)ٕज़Λ༻͍ͯΤϯυσόΠε্Ͱ஌తͳλεΫΛ࣮ߦ͢ΔΤοδAI͕ ஫໨͞Ε͍ͯΔɽ ࣗಈӡసंɼ΢ΣΞϥϒϧ୺຤ʢεϚʔτ΢ΥονɼεϚʔτάϥεʣɼ ࢈ۀϩϘοτɼ؂ࢹΧϝϥɼetc. ظ଴͞ΕΔԠ༻෼໺

Slide 5

Slide 5 text

5 ΤοδAI࣮ݱͷͨΊͷγεςϜܗଶ ΤοδAIͷ࣮ݱํ๏͸ɼܭࢉίετ͕ߴ͍AIͷֶशͱਪ࿦ͷϓϩηεΛͲͷܭࢉࢿݯ্Ͱ ࣮ߦ͢Δ͔ʹΑΓଟذʹ౉͓ͬͯΓɼ໨త΍ཁٻʹԠͯ͡ద੾ʹબ୒͢Δɽ Ϋϥ΢υͰॲཧ͢Δ৔߹ ΤοδAIͷγεςϜܗଶͷྫ Cloud ֶश ਪ࿦ Edge ֶश΍ਪ࿦ͷҰ෦ΛσόΠεΑΓ५୔ͳॲཧೳྗ Λ༗͢ΔΫϥ΢υͰߦ͏ σόΠεɾΤοδͰॲཧ͢Δ৔߹ Cloud ֶश ਪ࿦ ֶश΍ਪ࿦ͷҰ෦ΛσόΠε্ɼ͋Δ͍͸σόΠε ʹ෺ཧతʹ͍ۙωοτϫʔΫ্ͷܭࢉࢿݯͰߦ͏ ֶश ਪ࿦ ྫ͑͹ɼσόΠε͕ਓؒʹର͢ΔΠϯλʔϑΣʔεΛ୲͏΋ͷΛ૝ఆͨ͠৔߹ɼਓ͕ؒ஗ԆΛײ͡ͳ͍ ਺ेmsΦʔμʔͷԠ౴ੑ͕ཁٻ͞ΕΔͨΊɼ௨৴஗ԆͷΈͰཁٻ͞ΕΔԠ౴࣌ؒΛ௒͑Δɽ ͜ͷ৔߹ɼΫϥ΢υΛհ͞ͳ͍γεςϜܗଶ͕๬·ΕΔɽ ਺ඦmsΦʔμʔͷ ௨৴஗Ԇ͕ൃੜ ਺msΦʔμʔͷ ௨৴஗ԆΛ཈͑Δ ਪ࿦ ਪ࿦

Slide 6

Slide 6 text

6 ΤοδAIʹ͓͚Δੜ੒Ϟσϧ • ؍ଌσʔλ͸֬཰తʹੜ੒͞Ε͍ͯΔͱԾఆ͠ɼͦͷੜ੒աఔΛ ֬཰෼෍ͱͯ͠ϞσϧԽ͢ΔΞϓϩʔν (=֬཰తੜ੒Ϟσϧ) • ֶशޙͷϞσϧ͔Β৽ͨʹσʔλΛੜ੒Ͱ͖Δ ੜ੒Ϟσϧͱ͸ • ଟ͘ͷ֬཰తੜ੒Ϟσϧͷֶशɾਪ࿦ʹ͸ɼҰൠʹܭࢉίετ͕ߴ͍֬཰෼෍(໬౓ؔ਺)͔Βͷ αϯϓϦϯά͕ඞཁ • σόΠε͸Ұൠʹॲཧೳྗ͕௿͍ͨΊɼσόΠε্Ͱֶशɾਪ࿦Λ׬݁͢Δͷ͸೉͍͠ɽ ੜ੒Ϟσϧͷֶश [1] R. Salakhutdinov and G. Hinton, “Deep Boltzmann Machines”, in Proceedings of the International Conference on Artificial Intelligence and Statistics, 2009, pp. 448-455. • ΤϯυσόΠεʹը૾ɾจষੜ੒౳ͷ૑଄తλεΫ΍ҟৗݕ஌ɼ ऩूσʔλͷܽଛ஋ิ׬ɾϊΠζআڈͳͲ෯޿͍Ԡ༻ੑΛ΋ͨΒ͢ɽ ਂ૚ϘϧπϚϯϚγϯʹΑΔը૾ੜ੒[1] pθ (x) pdata (x) ਅͷ෼෍(σʔλ෼෍) ੜ੒Ϟσϧ ੜ੒Ϟσϧ Λσʔλ෼෍ ʹ͚ۙͮΔΑ͏ʹֶश͢Δ pθ (x) pdata (x)

Slide 7

Slide 7 text

7 ຊݚڀͷ໨త • ΤοδAIʹ͓͍ͯɼߴ͍Ԡ༻ੑΛ࣋ͭੜ੒ϞσϧΛΫϥ΢υΛհͣ͞ʹΤϯυ σόΠε্Ͱ׆༻͢ΔͨΊͷΞʔΩςΫνϟͷఏҊ͢Δɽ • ൚༻త͔ͭ௿εϖοΫͳσόΠε্Ͱੜ੒Ϟσϧͷ׆༻ΛՄೳʹ͢Δɽ • Ϋϥ΢υΛհͣ͞ʹੜ੒ϞσϧΛޮ཰తʹֶश͠ɼ͔ͭਪ࿦࣌ͷσόΠε ͷԠ౴ੑΛ޲্ͤ͞Δɽ

Slide 8

Slide 8 text

2. ΤοδAIʹ͓͚Δੜ੒Ϟσϧͷ ׆༻ͱ՝୊

Slide 9

Slide 9 text

9 ΤοδAIʹ͓͚Δੜ੒Ϟσϧͷ׆༻ • Ϋϥ΢υΛհ͞ͳ͍ੜ੒Ϟσϧͷֶशɾਪ࿦ͷͨΊͷΞϓϩʔν • σόΠε͔ΒͷΞϓϩʔν • ߴ͍ॲཧೳྗΛ༗͢ΔσόΠεͷ։ൃ ྫʣEdge TPUɼJetson Nano • ֶशϞσϧ͔ΒͷΞϓϩʔν • αϯϓϦϯά͕ܰྔͳֶशϞσϧɼϞσϧѹॖٕज़ͷ։ൃͳͲɽ • ֶशɾਪ࿦ख๏͔ΒͷΞϓϩʔν • ޮ཰తͳֶशɾਪ࿦ख๏ͷ։ൃͳͲ

Slide 10

Slide 10 text

10 ΤοδAIʹ͓͚Δੜ੒Ϟσϧͷ׆༻ • Ϋϥ΢υΛհ͞ͳ͍ੜ੒Ϟσϧͷֶशɾਪ࿦ͷͨΊͷΞϓϩʔν • σόΠε͔ΒͷΞϓϩʔν • ߴ͍ॲཧೳྗΛ༗͢ΔσόΠεͷ։ൃ ྫʣEdge TPUɼJetson Nano • ֶशϞσϧ͔ΒͷΞϓϩʔν • αϯϓϦϯά͕ܰྔͳֶशϞσϧɼϞσϧѹॖٕज़ͷ։ൃͳͲɽ • ֶशɾਪ࿦ख๏͔ΒͷΞϓϩʔν • ޮ཰తͳֶशɾਪ࿦ख๏ͷ։ൃͳͲ

Slide 11

Slide 11 text

11 ྔࢠΞχʔϦϯάͷԠ༻ઌ ྔࢠΞχʔϦϯάΛ༻͍ͨ৽ͨͳΞϓϩʔν 1ɽ૊߹ͤ࠷దԽ໰୊ 2ɽαϯϓϦϯά αϯϓϦϯάͱ͸ɼ֬཰෼෍͔Βඪຊ(αϯϓϧ)Λநग़͢Δ͜ͱɽ ֬཰෼෍ͷظ଴஋ܭࢉʹ༻͍ΒΕΔɽ D-Wave Systems͕ࣾ։ൃ͢ΔྔࢠΞχʔϦϯάϚγϯʢҎԼɼD-WaveϚγϯʣ͸ɼҎԼͷ ੜ੒Ϟσϧͷֶशɾਪ࿦ͷߴ଎Խ΍ߴਫ਼౓Խʹ੒ޭ͍ͯ͠Δɽ [1] S. H. Adachi and M. P. Henderson, “Application of Quantum Annealing to Training of Deep Neural Networks”, arXiv:1510.06356 2015. [2] D. Korenkevych et al., “Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines”, arXiv:1611.04528 2016. [3] W. Vinci et al., “A Path Towards Quantum Advantage in Training Deep Generative Models with Quantum Annealers”, arXiv:1912.02119 2019. • ϘϧπϚϯϚγϯ • ੍ݶϘϧπϚϯϚγϯ[1] • ՄࢹϊʔυͷΈͷϘϧπϚϯϚγϯ[2] • ม෼ΦʔτΤϯίʔμʢVAEʣ[3]

Slide 12

Slide 12 text

12 ΤοδAI΁ͷద༻ͱ՝୊ [1] http://dwavejapan.com/system/ [2] D. Korenkevych et al., “Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines”, arXiv:1611.04528 2016. [3] Z. Chen et al., “An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance”, in Proceedings of the Second ACM/IEEE Symposium on Edge Computing, Oct. 2017, pp. 1-14. D-Wave 2000Q[1] • ྔࢠΞχʔϦϯάΛ׆༻ͨ͠ੜ੒Ϟσϧͷֶशɾਪ࿦ͷ࢓૊ΈΛΤοδAI ʹద༻͢Δ৔߹ɼD-WaveϚγϯ͸අ༻΍ۃ௿Թͷಈ࡞؀ڥΛཁ͢ΔͳͲͷ ཧ༝͔ΒΤοδྖҬ΁ͷ഑ஔ͸ࠔ೉Ͱ͋Δɽ • D-WaveϚγϯΛར༻͢Δࡍ͸ɼωοτϫʔΫΛܦ༝ͨ͠Ϋϥ΢υαʔϏε ͱͯ͠ར༻͢Δɽ • Ϋϥ΢υΛհͣ͞ΤοδଆͰֶशΛߦ͏͜ͱ͕Ͱ͖ͳ͍ͨΊɼσόΠεͱΫϥ΢υؒͷ෺ཧత ͳڑ཭ʹىҼͨ͠௨৴஗Ԇ͕ൃੜ͢Δɽ • D-WaveϚγϯͷαϯϓϦϯάʹ͔͔Δ͕࣌ؒ֓ͶμsΦʔμʔ[2]Ͱ͋Δ͜ͱɼ͓ΑͼΫϥ΢υ ͱͷ௨৴஗Ԇ͕֓Ͷ਺ඦmsΦʔμʔ[3]Ͱ͋Δ͜ͱΛߟ͑Δͱɼੜ੒Ϟσϧͷֶश΍ਪ࿦ʹ͓͍ ͯ௨৴஗Ԇ͕ϘτϧωοΫʹͳΔɽ

Slide 13

Slide 13 text

13 D-WaveϚγϯͱΞχʔϦϯάϚγϯ ΠδϯάϞσϧ [1] M. Yamaoka et al., “CMOS Annealing Machine: an In-memory Computing Accelerator to Process Combinatorial Optimization Problems”, in IEEE Custom Integrated Circuits Conference (CICC), Apr. 2019, pp. 1-8. [2] M. Aramon et al., “Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer”, Front. Phys., vol. 7, no. 48, Apr. 2019. [3] E. Crosson and A. W. Harrow, “Simulated Quantum Annealing Can Be Exponentially Faster Than Classical Simulated Annealing”, in IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), Oct. 2016, pp. 714-723. • D-WaveϚγϯͷΑ͏ͳྔࢠϏοτͷৼΔ෣͍Λσδλϧճ࿏্ͰγϛϡϨʔτ͢Δ΋ͷͱͯ͠ɼ ΞχʔϦϯάϚγϯ͕͋Δɽ • ΞχʔϦϯάϚγϯ͸͜Ε·ͰʹɼݱߦͷD-WaveϚγϯͰ͸ղ͚ͳ͍໰୊αΠζΛ࣋ͭ૊߹ͤ ࠷దԽ໰୊ͷղ๏ͱͯ͠ɼͦͷ༗ޮੑ͕ࣔ͞Ε͍ͯΔɽ • ΞχʔϦϯάϚγϯ͸ɼD-WaveϚγϯͱൺ΂ͯখܕ͔ͭ௿ίετͰ͋ΓɼৗԹͰಈ࡞͢Δ ͱ͍͏ಛ௃Λ༗͍ͯ͠Δɽ ※ ຊൃදʹ͓͚ΔΞχʔϦϯάϚγϯͷఆٛ͸ɼΠδϯάϞσϧͷجఈঢ়ଶ୳ࡧΛ໨త ɹͱͨ͠΋ͷͰ͋ΓɼFPGA΍ASICΛ༻͍ͨϋʔυ΢ΣΞ࣮૷[1,2]ʹՃ͑ɼGPU΍CPU ɹ্Ͱಈ࡞͢Διϑτ΢ΣΞ࣮૷[3]΋ؚΉ

Slide 14

Slide 14 text

3. ఏҊ͢ΔΞʔΩςΫνϟ

Slide 15

Slide 15 text

15 ΞʔΩςΫνϟ֓ཁ ੜ੒Ϟσϧͷֶशɾਪ࿦ʹඞཁͳαϯϓϦϯάॲཧͷΞΫηϥϨʔλͱͯ͠ɼ ΞχʔϦϯάϚγϯΛσόΠεͷۙ๣ʹ഑ஔ͢ΔΞʔΩςΫνϟ Edge server Cloud WAN Edge End devices Annealing machine AI AI AI AI AI ΤοδྖҬʹ഑ஔͨ͠ΞχʔϦϯάϚγϯ͸ɼαϯϓϦϯάॲཧͷΞΫηϥϨʔλͱͯ͠ ෳ਺୆ͷσόΠεʹڞ༗͞ΕΔɽ

Slide 16

Slide 16 text

16 ΞχʔϦϯάϚγϯΛ׆༻ֶͨ͠शɾਪ࿦ ΞχʔϦϯάϚγϯ͸ɼྔࢠྗֶతͳΏΒ͗Λར༻͠ͳ͍ͳͲಈ࡞ݪཧ͸D-WaveϚγϯͱҟ ͳΔ͕ɼର৅ͱ͢Δ໰୊(ΠδϯάϞσϧͷجఈঢ়ଶ୳ࡧ)͸D-WaveϚγϯͱಉ༷Ͱ͋Δɽ ͦͷͨΊɼΞχʔϦϯάϚγϯΛੜ੒Ϟσϧͷֶशɾਪ࿦ʹ׆༻Ͱ͖ͳ͍͔ɽ ධՁ݁ՌΛޙड़͢Δ ظ଴Ͱ͖Δ͜ͱ • αϯϓϦϯάॲཧͷߴ଎Խ ΠδϯάϞσϧͷجఈঢ়ଶ୳ࡧʹର͢Δߴ଎ੑΛαϯϓϦϯάʹ׆༻ • ֶशਫ਼౓ͷ޲্ D-WaveϚγϯͰࣔ͞ΕͨΑ͏ͳੜ੒Ϟσϧͷֶशਫ਼౓޲্

Slide 17

Slide 17 text

17 σόΠεͷԠ౴ੑͱ௨৴஗Ԇ • σόΠεɾΞχʔϦϯάϚγϯؒͷ௨৴஗ԆΛ਺msΦʔμʔʹ཈͑Δɽ • σόΠεͷԠ౴࣌ؒʹର͢Δ௨৴஗ԆͷӨڹ͕খ͘͞ɼΞχʔϦϯάϚγϯͷαϯϓϦϯ ά࣌ؒΛߴ଎ԽͰ͖Ε͹ɼͦΕʹ൐͍σόΠεͷԠ౴ੑΛ޲্Ͱ͖Δɽ ΞχʔϦϯάϚγϯ͸ɼD-WaveϚγϯͱൺ΂ͯখܕ͔ͭ௿ίετͰ͋ΓɼৗԹͰಈ࡞͢ΔͳͲ ಛघͳಈ࡞؀ڥΛཁ͠ͳ͍ͨΊɼσόΠεʹ͍ۙΤοδྖҬʹ഑ஔ͢Δ͜ͱʹద͍ͯ͠Δɽ ͦͷͨΊɼΞχʔϦϯάϚγϯΛσόΠεۙ๣ʹ഑ஔ͢ΔΞʔΩςΫνϟΛͱΔɽ ධՁ݁ՌΛޙड़͢Δ ظ଴Ͱ͖Δ͜ͱ

Slide 18

Slide 18 text

4. ධՁͱߟ࡯

Slide 19

Slide 19 text

19 ఏҊΞʔΩςΫνϟͷධՁ ҎԼͷ2఺ʹ͓͍ͯɼఏҊΞʔΩςΫνϟͷγεςϜͱͯ͠ͷར఺ΛධՁ͢Δɽ ̍ɽΞχʔϦϯάϚγϯΛ༻͍ͯੜ੒ϞσϧͷҰͭͰ͋ΔϘϧπϚϯϚγϯΛޮ཰త ɹɹʹֶशͰ͖Δ͔ʹ͍ͭͯͷධՁɽ ɹɹΞχʔϦϯάϚγϯΛʮΞΫηϥϨʔλͱͯ͠ར༻͢Δʯ͜ͱͷར఺ ̎ɽΞχʔϦϯάϚγϯΛ௨৴஗Ԇ͕খ͍͞σόΠεۙ๣ʹ഑ஔ͢Δ͜ͱͰਪ࿦࣌ͷ ɹɹσόΠεͷԠ౴ੑΛ޲্Ͱ͖Δ͔ʹ͍ͭͯධՁ ɹɹΞχʔϦϯάϚγϯΛʮσόΠεͷۙ๣ʹ഑ஔ͢Δʯ͜ͱͷར఺

Slide 20

Slide 20 text

࣮ݧ؀ڥ ֤ϩʔϧͷઆ໌ • σόΠε • ੜ੒Ϟσϧͷֶशɾਪ࿦Λߦ͏໾ׂɽ ֶशɾਪ࿦ͰඞཁͳαϯϓϦϯάΛΞχʔϦϯάϚγϯʹཁٻ͢ΔΫϥΠΞϯτͱͯ͠ಈ࡞ • ੜ੒Ϟσϧͱͯ͠ɼ੍ݶϘϧπϚϯϚγϯ(RBM)Λ༻͍Δɽ • ֶशσʔλͱͯ͠MNISTσʔληοτΛ༻͍ͯɼRBMͰը૾ͷੜ੒աఔΛֶश͢Δɽ • ΞχʔϦϯάϚγϯ • σόΠε͔ΒͷαϯϓϦϯάཁٻΛड͚ɼܭࢉ݁ՌΛฦ͢໾ׂ • αϯϓϦϯάͷॲཧʹ͸ɼSimulated Quantum Annealing(SQA)Λ༻͍Δɽ • SQAΛ࣮૷ͨ͠Sqaod[1]Λ༻͍ͯWeb APIΛߏஙͨ͠ɽ v 1 v 2 v 3 v n h 1 h 2 h m RBMͷάϥϑߏ଄ ӅΕ૚ m = 100 Մࢹ૚ n = 784 ΞχʔϦϯάϚγϯ σόΠε CPU1ίΞ ϝϞϦ1GB CPU8ίΞ ϝϞϦ32GB αϯϓϦϯάཁٻ ܭࢉ݁ՌΛฦ͢ 20 Web API ֶशσʔλ [1] https://github.com/shinmorino/sqaod

Slide 21

Slide 21 text

1. ΞχʔϦϯάϚγϯΛ༻ֶ͍ͨश RBMΛҎԼͷೋͭͷֶशख๏Ͱֶश͠ɼൺֱ͢Δɽ ɹطଘͷֶशख๏ɿίϯτϥεςΟϒɾμΠόʔδΣϯε(CD)๏[1] ɹఏҊख๏ɿΞχʔϦϯάϚγϯ (ΞϧΰϦζϜ͸SQA) ֶशํ๏ αϯϓϦϯάͱύϥϝʔλߋ৽͕Ұճ࣮ͣͭߦ 21 1ΤϙοΫ=600ΠςϨʔγϣϯ CD๏͸ɼશͯͷॲཧΛσόΠε্Ͱ࣮ߦ͢Δɽ ҰํɼSQAͰ͸αϯϓϦϯάͷॲཧͷΈΛWeb APIܦ༝ͯ͠ΞχʔϦϯάϚγϯͰ࣮ߦ͢Δɽ MNISTͷ60000ຕͷ܇࿅ը૾σʔλΛόοναΠζ100ͰϛχόονֶशΛߦ͏ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ 1ΠςϨʔγϣϯ [1] G. Hinton, “Training Products of Experts by Minimizing Contrastive Divergence”, Neural computation, vol. 14, no. 8, pp. 1771-1800, Aug. 2002.

Slide 22

Slide 22 text

22 1. ΞχʔϦϯάϚγϯΛ༻ֶ͍ͨश • ޿ൣͳ໰୊ઃఆʹରͯ͠ಉ༷ͷ݁Ռ͕ಘΒΕΔ͔ɽ • ݫີʹ͸࠷খ஋୳ࡧͱظ଴஋ܭࢉ͸ҟͳΔॲཧͰ͋ΔͨΊɼ࠷খ஋୳ࡧͷฏۉ஋Λظ଴஋ ͱͯۙ͠ࣅ͢Δ͜ͱʹΑΔӨڹ͸Ͳ͏͔ɼetc. SQA͸CD๏ʹൺ΂ͯɼগͳ͍ΤϙοΫ਺Ͱ௿͍࠶ߏ੒ޡࠩʹ ౸ୡ͓ͯ͠Γɼऩଋޙͷ࠶ߏ੒ޡࠩ΋௿͍஋Λ͍ࣔͯ͠Δɽ ࠓճͷ৚݅ʹ͓͍ͯɼSQA͸CD๏ΑΓ΋RBMΛޮ཰తʹֶश Ͱ͖͍ͯΔͱݴ͑Δɽ ֶशޙͷϞσϧ͕σʔλͷੜ੒աఔΛͲΕ͚ͩଊ͑ͯ ͍Δ͔ͷࢦඪͱͳΓɼ௿͍஋΄Ͳྑ͍Ϟσϧͱݴ͑Δ ධՁࢦඪ ߋͳΔݕূ͕ඞཁ ΤϙοΫ͋ͨΓͷฏۉֶश࣌ؒ CD๏ɿ5.21 sɼSQAɿ282 s ΤϙοΫ਺ʹର͢Δ࠶ߏ੒ޡࠩ Reconstruction Error = ∑ i (image(i) ≠ reconstructedImage(i)) total pixels

Slide 23

Slide 23 text

23 2. ௨৴஗ԆͷӨڹ ҎԼͷೋͭͷ؀ڥͰRBMͷਪ࿦ʹཁ͢Δ࣌ؒΛܭଌ͠ɼൺֱ͢Δɽ ๺ւಓੴङࢢͷDC ΞϝϦΧ߹ऺࠃ όʔδχΞभͷDC ΞχʔϦϯάϚγϯ σόΠε σόΠε ᶃ RTT: 0.612 ms ᶄ RTT: 176 ms ᶃ ఏҊख๏ σόΠεͱΞχʔϦϯάϚγϯΛಉDC಺ʹ഑ஔ͢Δ ᶄ Ϋϥ΢υ؀ڥ σόΠεͱΞχʔϦϯάϚγϯΛ෺ཧతʹڑ཭͕ ɹ཭ΕͨDC಺ʹͦΕͧΕ഑ஔ͢Δɽ ਪ࿦ͷॲཧͷྲྀΕ σόΠε ΞχʔϦϯάϚγϯ ਪ࿦࣌ؒʹ͸ɼ ɾσόΠεͱΞχʔϦϯάϚγϯؒͷ௨৴஗Ԇ ɾΞχʔϦϯάϚγϯ্ͰͷαϯϓϦϯά࣌ؒ ɾWeb APIͷԠ౴࣌ؒ ͳͲؚ͕·Ε͍ͯΔɽ ᶃαϯϓϦϯάཁٻ ᶅܭࢉ݁ՌΛฦ͢ ᶄαϯϓϦϯά࣮ߦ ※ RTT: pingίϚϯυΛ༻͍ͯଌఆͨ͠ϥ΢ϯυτϦοϓλΠϜ Web API

Slide 24

Slide 24 text

24 2. ௨৴஗ԆͷӨڹ RBMͷਪ࿦࣌ؒͷܭଌ݁Ռ • ਪ࿦࣌ؒ͸ɼΫϥ΢υ؀ڥ͕ఏҊख๏ʹൺ΂ͯ350 ms ஗͍݁Ռͱͳͬͨɽ • ͜ͷࠩ෼͸ɼΫϥ΢υ؀ڥ͕ఏҊख๏ʹൺ΂ͯσόΠε ͱΞχʔϦϯάϚγϯؒͷ෺ཧతͳڑ཭͕ԕ͘ͳΔ͜ͱ Ͱੜ͡Δ௨৴஗ԆʹىҼ͍ͯ͠Δͱߟ͑ΒΕΔɽ ࣮ݧ݁Ռ ※ਪ࿦࣌ؒʹ͸αϯϓϦϯάؚ͕࣌ؒ·ΕΔ

Slide 25

Slide 25 text

25 2. ௨৴஗ԆͷӨڹ RBMͷਪ࿦࣌ؒͷܭଌ݁Ռ • ਪ࿦࣌ؒ͸ɼΫϥ΢υ؀ڥ͕ఏҊख๏ʹൺ΂ͯ350 ms ஗͍݁Ռͱͳͬͨɽ • ͜ͷࠩ෼͸ɼΫϥ΢υ؀ڥ͕ఏҊख๏ʹൺ΂ͯσόΠε ͱΞχʔϦϯάϚγϯؒͷ෺ཧతͳڑ཭͕ԕ͘ͳΔ͜ͱ Ͱੜ͡Δ௨৴஗ԆʹىҼ͍ͯ͠Δͱߟ͑ΒΕΔɽ • D-WaveϚγϯΛ༻͍ͨ৔߹ɼαϯϓϦϯά࣌ؒ͸ΞχʔϦϯάϚγϯΑΓߴ଎Ͱ͋Δ͜ͱ͕༧૝͞Ε Δ͕ɼྫ͑αϯϓϦϯά͕࣌ؒμsΦʔμʔͰ͋ͬͯ΋ɼ௨৴஗Ԇ͕ϘτϧωοΫͱͳΓɼਪ࿦࣌ؒ͸ఏ Ҋख๏ΑΓ΋஗͍400 msఔ౓Ͱ͋Δ͜ͱ͕༧૝͞ΕΔɽ • ҰํɼఏҊख๏Ͱ͸ɼਪ࿦࣌ؒʹରͯ͠αϯϓϦϯά͕࣌ؒࢧ഑తͰ͋ΔͨΊɼΑΓαϯϓϦϯά࣌ؒ ͕୹͍ΞχʔϦϯάϚγϯΛ༻͍Δ͜ͱͰਪ࿦࣌ؒΛେ෯ʹ୹ॖͰ͖Δɽ ྫ͑͹ɼαϯϓϦϯά࣌ؒΛ30 msఔ౓·Ͱߴ଎ԽͰ͖Ε͹ɼਪ࿦͕࣌ؒ100 msΛԼճΔɽ Ϋϥ΢υܦ༝ͰD-WaveϚγϯΛ༻͍Δ৔߹ͱͷൺֱ ࣮ݧ݁Ռ ※ਪ࿦࣌ؒʹ͸αϯϓϦϯάؚ͕࣌ؒ·ΕΔ

Slide 26

Slide 26 text

5. ·ͱΊ

Slide 27

Slide 27 text

27 ·ͱΊ • ຊݚڀͰ͸ɼੜ੒Ϟσϧͷֶशɾਪ࿦ʹඞཁͳαϯϓϦϯάॲཧͷΞΫηϥϨʔλͱͯ͠ɼ ΞχʔϦϯάϚγϯΛσόΠεͷۙ๣ʹ഑ஔ͢Δ͜ͱͰɼΤοδAIʹ͓͍ͯੜ੒Ϟσϧͷֶश ΛΫϥ΢υΛհͣ͞ʹޮ཰Խ͠ɼ͔ͭਪ࿦࣌ͷσόΠεͷԠ౴ੑΛ޲্ͤ͞ΔΞʔΩςΫ νϟΛఏҊͨ͠ɽ • ఏҊΞʔΩςΫνϟʹΑΓɼσόΠε͸൚༻త͔ͭ௿εϖοΫͰ͋Γͳ͕Βɼܭࢉίετ͕ ߴ͍αϯϓϦϯάͷॲཧΛΞχʔϦϯάϚγϯ͕୲͏͜ͱͰɼߴ͍Ԡ༻ੑΛ࣋ͭੜ੒Ϟσϧ ΛσόΠε্Ͱ׆༻͢Δ͜ͱΛՄೳʹ͢Δɽ • ࣮ݧ͔ΒɼΞχʔϦϯάϚγϯʢSQAʣ༻͍ͯੜ੒ϞσϧͷҰͭͰ͋ΔRBMΛޮ཰తʹֶश Ͱ͖Δ͜ͱɼ͓ΑͼΞχʔϦϯάϚγϯΛσόΠεͷۙ๣ʹ഑ஔ͢Δ͜ͱͰɼਪ࿦࣌ؒͷߴ ଎Խ͕ظ଴Ͱ͖Δ͜ͱΛࣔͨ͠ɽ