Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
関西大学総合情報学部 浅野 晃 統計学 2024年度秋学期 第11回 分布の「型」を考える — 確率分布モデルと正規分布
Slide 2
Slide 2 text
ちょっと前回の復習📝📝
Slide 3
Slide 3 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 3 日本男性全員の身長を調べられるか? データの一部を調べて度数分布を推測する いや,せめて平均や分散を推測する 調べたいデータ全体を調べられるか? 統計的推測
Slide 4
Slide 4 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出 4 データ全体から,いくつかの数値を 公平なくじびきで選ぶ [無作為標本抽出]という 調べたい(が全部を調べるのは無理な)集団[母集団] 調べられる程度のデータ[標本(サンプル)]
Slide 5
Slide 5 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布で考えると 5 階級値 162.5 167.5 172.5 相対度数 15% 20% 20% 10% 177.5 母集団の度数分布 無作為抽出 階級値 162.5 167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5 標本の[確率分布]
Slide 6
Slide 6 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布と確率変数 6 母集団の度数分布 (母集団分布) = つまり 階級値 162.5 167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5 標本の確率分布 標本は, 値がいくらになるかは決まっていない しかし確率分布が決まっている (知っているかどうかは別) こういう数を[確率変数]という (中国語では随機変数) 「標本は,確率変数(の一種)である」
Slide 7
Slide 7 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 7 標本として数値をいくつか取り出して, それらの平均 母平均が知りたい 母集団 (日本男性全体) 母平均 μ が,日本男性全員は調べられない [標本平均] 標本平均は母平均に近い値になるか?
Slide 8
Slide 8 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 8 母集団と同じ 期待値 μ 分散 σ2 極端な値はあまりないので 分散が小さくなる 期待値 μ 分散 / σ2 n 標本平均の分散は,母分散の「標本サイズ分の一」になる 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
Slide 9
Slide 9 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 9 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が 標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い 標本平均を 何度も計算しても μ いつ計算しても,たいていそれほど変わらない ¯ X ¯ X ¯ X ¯ X いま1回だけ計算した標本平均は,上のどれなのかわからないが ? ? ? ? たいてい,ほぼ母平均に近い値だろう
Slide 10
Slide 10 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「標本の大きさ」の意味 10 母分散が のとき,標本平均の分散が σ2 σ2/n 標本平均の分散に関係しているのは 標本の大きさであって,母集団の大きさは関係ない 推測の確かさに影響するのは 標本の大きさであって, 標本の大きさの,母集団の大きさに対する割合 ではない
Slide 11
Slide 11 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本の大きさとは 11 「10人からなる標本」の意味は, 1,000人からなる母集団でも100,000人からなる母集団でも同じ 🤔🤔… 理想的な無作為抽出では,復元抽出を行う 標本サイズは, 「取り出された数値の個数」というよりも 「同一の母集団から数値ひとつひとつを取り出す回数」 → 母集団の大きさに対する割合は無関係 (非復元抽出をした場合は,計算で補正する方法がある)
Slide 12
Slide 12 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 12 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう どのくらい近い? どのくらいの確率で? はずれる確率は?
Slide 13
Slide 13 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 12 ここから先に進みます。 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう どのくらい近い? どのくらいの確率で? はずれる確率は?
Slide 14
Slide 14 text
分布の「型」を考える🤔🤔
Slide 15
Slide 15 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 14 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう どのくらい近い? どのくらいの確率で? はずれる確率は?
Slide 16
Slide 16 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 14 計算するには, 式で表されてないといけない いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう どのくらい近い? どのくらいの確率で? はずれる確率は?
Slide 17
Slide 17 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布と確率変数 15 母集団の度数分布 (母集団分布) = つまり 標本の確率分布 階級値 162.5 167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5
Slide 18
Slide 18 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布と確率変数 15 これは式ではなく数値の集まり, 計算できない 母集団の度数分布 (母集団分布) = つまり 標本の確率分布 階級値 162.5 167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5
Slide 19
Slide 19 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 式で表す 16 階級値 162.5 167.5 172.5 選ばれ る確率 15% 20% 20% 10% 177.5 度数分布を
Slide 20
Slide 20 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 式で表す 16 階級値 162.5 167.5 172.5 選ばれ る確率 15% 20% 20% 10% 177.5 何かの式で書ける ものと仮定する 度数分布を
Slide 21
Slide 21 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 式で表す 16 階級値 162.5 167.5 172.5 選ばれ る確率 15% 20% 20% 10% 177.5 何かの式で書ける ものと仮定する 階級 各柱の面積 =度数 90 100 110 120 130 140 150 度数分布を ヒストグラムが
Slide 22
Slide 22 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 式で表す 16 階級値 162.5 167.5 172.5 選ばれ る確率 15% 20% 20% 10% 177.5 何かの式で書ける ものと仮定する 階級 各柱の面積 =度数 90 100 110 120 130 140 150 度数分布を ヒストグラムが 何かの式で表される関数の グラフであると仮定する
Slide 23
Slide 23 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布モデルとパラメータ 17 階級 各柱の面積 =度数 90 100 110 120 130 140 150 何かの式のグラフで あると仮定する
Slide 24
Slide 24 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布モデルとパラメータ 17 階級 各柱の面積 =度数 90 100 110 120 130 140 150 何かの式のグラフで あると仮定する パラメータを推定すればグラフが描ける 式=[確率分布モデル]
Slide 25
Slide 25 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布モデルとパラメータ 17 階級 各柱の面積 =度数 90 100 110 120 130 140 150 何かの式のグラフで あると仮定する パラメータを推定すればグラフが描ける 式=[確率分布モデル] 直線のモデル x y
Slide 26
Slide 26 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布モデルとパラメータ 17 階級 各柱の面積 =度数 90 100 110 120 130 140 150 何かの式のグラフで あると仮定する パラメータを推定すればグラフが描ける 式=[確率分布モデル] 直線のモデル y = ax + b x y
Slide 27
Slide 27 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布モデルとパラメータ 17 階級 各柱の面積 =度数 90 100 110 120 130 140 150 何かの式のグラフで あると仮定する パラメータを推定すればグラフが描ける 式=[確率分布モデル] 直線のモデル y = ax + b パラメータ x y
Slide 28
Slide 28 text
連続型確率分布📈📈
Slide 29
Slide 29 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ヒストグラムを式で表す 19 こんなヒストグラムを, 式で書けるだろうか?
Slide 30
Slide 30 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ヒストグラムを式で表す 19 こんなヒストグラムを, 式で書けるだろうか? これを表す式のほうが 数学は簡単。
Slide 31
Slide 31 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ヒストグラムを式で表す 19 こんなヒストグラムを, 式で書けるだろうか? これを表す式のほうが 数学は簡単。 階級の区切り方が どんどん細かくなって, 見えなくなったと考える [連続型確率分布]
Slide 32
Slide 32 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布 20 ヒストグラム
Slide 33
Slide 33 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布 20 ヒストグラム ある範囲に入る確率 =柱の面積の合計
Slide 34
Slide 34 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布 20 ヒストグラム ある範囲に入る確率 =柱の面積の合計 階級の区切りを 細かく
Slide 35
Slide 35 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布 20 ヒストグラム ある範囲に入る確率 =柱の面積の合計 階級の区切りを 細かく
Slide 36
Slide 36 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布 20 ヒストグラム ある範囲に入る確率 =柱の面積の合計 階級の区切りを 細かく 同じ範囲なら 柱の面積の合計は同じ
Slide 37
Slide 37 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布 20 ヒストグラム ある範囲に入る確率 =柱の面積の合計 階級の区切りを 細かく 同じ範囲なら 柱の面積の合計は同じ 階級の区切りを 十分に細かく
Slide 38
Slide 38 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布 20 ヒストグラム ある範囲に入る確率 =柱の面積の合計 階級の区切りを 細かく 同じ範囲なら 柱の面積の合計は同じ 同じ範囲なら 柱の面積の合計は同じ 階級の区切りを 十分に細かく
Slide 39
Slide 39 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布 20 ヒストグラム ある範囲に入る確率 =柱の面積の合計 階級の区切りを 細かく 同じ範囲なら 柱の面積の合計は同じ 同じ範囲なら 柱の面積の合計は同じ [連続型確率分布] 階級の区切りを 十分に細かく
Slide 40
Slide 40 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率密度関数と確率 21 ヒストグラムの上の縁=[確率密度関数]
Slide 41
Slide 41 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率密度関数と確率 21 ヒストグラムの上の縁=[確率密度関数] このグラフが示すのは確率ではない
Slide 42
Slide 42 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率密度関数と確率 21 この範囲に入る確率=この面積 =確率密度関数の積分 ヒストグラムの上の縁=[確率密度関数] このグラフが示すのは確率ではない
Slide 43
Slide 43 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率密度関数の矛盾? 22 連続型確率変数が すべての実数のうちのどれかになる確率 =1(100%)
Slide 44
Slide 44 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率密度関数の矛盾? 22 連続型確率変数が すべての実数のうちのどれかになる確率 =1(100%) a 連続型確率変数が ある特定の値 になる確率 =0 a
Slide 45
Slide 45 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率密度関数の矛盾? 22 連続型確率変数が すべての実数のうちのどれかになる確率 =1(100%) a 連続型確率変数が ある特定の値 になる確率 =0 a 幅が0だから,面積も0
Slide 46
Slide 46 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率密度関数の矛盾? 22 連続型確率変数が すべての実数のうちのどれかになる確率 =1(100%) a 連続型確率変数が ある特定の値 になる確率 =0 a 幅が0だから,面積も0 なんかヘン?付録テキストで
Slide 47
Slide 47 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 連続型確率分布は,数学の都合 23 こんなのより こんなののほうが数式にしやすい 実際のデータは,有限の桁数の数字で 表されている限り,必ず離散的。
Slide 48
Slide 48 text
正規分布モデル
Slide 49
Slide 49 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布モデル 25 世の中には,[正規分布モデル]で表せるよう な母集団分布がたくさんある 長さの測定値の分布,共通テストの成績の分布 … [中心極限定理] 母集団のばらつきの原因が,無数の独立な原因の和のとき, 母集団分布は概ね正規分布になる
Slide 50
Slide 50 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布モデル 25 世の中には,[正規分布モデル]で表せるよう な母集団分布がたくさんある 長さの測定値の分布,共通テストの成績の分布 … [中心極限定理] 母集団のばらつきの原因が,無数の独立な原因の和のとき, 母集団分布は概ね正規分布になる 「日本男性の身長」も。
Slide 51
Slide 51 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の特徴 26 パラメータが平均(期待値)と分散 μ σ2 確率密度関数はこんな形 左右とも無限に 広がっている μ μ + σ x f(x) μ – σ
Slide 52
Slide 52 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の特徴 27 パラメータが平均(期待値)と分散 μ σ2 確率変数 の確率分布が 期待値 ,分散 の正規分布であることを X μ σ2 確率変数 が にしたがう という X N(μ, σ2) (わかりやすいものを推定すればよいので都合がいい)
Slide 53
Slide 53 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の特徴 27 パラメータが平均(期待値)と分散 μ σ2 確率変数 の確率分布が 期待値 ,分散 の正規分布であることを X μ σ2 確率変数 が にしたがう という X N(μ, σ2) (わかりやすいものを推定すればよいので都合がいい) ※英語ではnormal distribution,中国語では「常態分配」
Slide 54
Slide 54 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の特徴 28 期待値0の正規分布の 確率密度関数 標準偏差 0.5 標準偏差 1.0 標準偏差 1.5 標準偏差が大きくなると 中央部の広がりが大きくなり 高さが低くなる
Slide 55
Slide 55 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質1 29 確率変数 が にしたがう とき X N(μ, σ2) μだけ左に移動 μ 0 X 0 X – μ 広がりを (1 / σ)に縮める X – μ σ N(μ, σ2) N(0, σ2) N(0, 1) 0
Slide 56
Slide 56 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質1 29 確率変数 が にしたがう とき X N(μ, σ2) μだけ左に移動 μ 0 X 0 X – μ 広がりを (1 / σ)に縮める X – μ σ N(μ, σ2) N(0, σ2) N(0, 1) 0 は にしたがう (X − μ)/σ N(0,1)
Slide 57
Slide 57 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質1 30 確率変数 が にしたがう とき X N(μ, σ2) は にしたがう (X − μ)/σ N(0,1)
Slide 58
Slide 58 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質1 30 確率変数 が にしたがう とき X N(μ, σ2) は にしたがう (X − μ)/σ N(0,1) 「標準得点」と同じ
Slide 59
Slide 59 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質1 30 確率変数 が にしたがう とき X N(μ, σ2) は にしたがう (X − μ)/σ N(0,1) 「標準得点」と同じ 変換しても, やはり正規分布になる
Slide 60
Slide 60 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質1 30 確率変数 が にしたがう とき X N(μ, σ2) は にしたがう (X − μ)/σ N(0,1) 「標準得点」と同じ 変換しても, やはり正規分布になる を[標準正規分布]という N(0,1)
Slide 61
Slide 61 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質2 31 母集団と同じ 期待値 μ 分散 / σ2 n 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
Slide 62
Slide 62 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質2 31 正規分布なら 母集団と同じ 期待値 μ 分散 / σ2 n 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
Slide 63
Slide 63 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質2 31 正規分布なら こちらも 正規分布になる 母集団と同じ 期待値 μ 分散 / σ2 n 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
Slide 64
Slide 64 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の性質2 31 正規分布なら こちらも 正規分布になる N(μ, σ2/n) 母集団と同じ 期待値 μ 分散 / σ2 n 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
Slide 65
Slide 65 text
正規分布表の使いかた🔢🔢 「数表」を使って手作業で計算することは,いまではなくなりましたが, その仕組みだけは知っておくとよいと思います。
Slide 66
Slide 66 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 33 正規分布にしたがう確率変数がある範囲に入る確率 z f(z) 0 z 面積 = P(Z ≥ z) 数表を使って求める 標準正規分布について, 各zの値に対する この面積が載っている
Slide 67
Slide 67 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 34 例)確率変数 が にしたがうとき, が 以上である確率を求めよ。 X N(50,102) X 60
Slide 68
Slide 68 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 34 例)確率変数 が にしたがうとき, が 以上である確率を求めよ。 X N(50,102) X 60 性質1により, と変換 Z = (X − 50)/10 は標準正規分布にしたがう Z
Slide 69
Slide 69 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 34 例)確率変数 が にしたがうとき, が 以上である確率を求めよ。 X N(50,102) X 60 性質1により, と変換 Z = (X − 50)/10 のとき, X = 60 Z = (60 − 50)/10 = 1 は標準正規分布にしたがう Z
Slide 70
Slide 70 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 34 例)確率変数 が にしたがうとき, が 以上である確率を求めよ。 X N(50,102) X 60 性質1により, と変換 Z = (X − 50)/10 のとき, X = 60 Z = (60 − 50)/10 = 1 よって,求めるのは, が 以上である確率 Z 1 は標準正規分布にしたがう Z
Slide 71
Slide 71 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 34 例)確率変数 が にしたがうとき, が 以上である確率を求めよ。 X N(50,102) X 60 性質1により, と変換 Z = (X − 50)/10 のとき, X = 60 Z = (60 − 50)/10 = 1 よって,求めるのは, が 以上である確率 Z 1 は標準正規分布にしたがう Z P(Z ≧ 1)
Slide 72
Slide 72 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . .
Slide 73
Slide 73 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 の小数第1位まで z P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . .
Slide 74
Slide 74 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 の小数第2位 z の小数第1位まで z P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . .
Slide 75
Slide 75 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 の小数第2位 z の小数第1位まで z P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . .
Slide 76
Slide 76 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 の小数第2位 z の小数第1位まで z P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . .
Slide 77
Slide 77 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 の小数第2位 z の小数第1位まで z P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . .
Slide 78
Slide 78 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 の小数第2位 z の小数第1位まで z P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . .
Slide 79
Slide 79 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 の小数第2位 z の小数第1位まで z P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . .
Slide 80
Slide 80 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 35 の小数第2位 z の小数第1位まで z P(Z z) を求める 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 . . . . . . 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 . . . P(Z ≧ 1)
Slide 81
Slide 81 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 36 テキストの「問題例」 確率変数 が正規分布 に したがうとき,次の確率を求めてください。 X N(50,102) (1) (2) P(X ≧ 55) P(45 ≦ X ≦ 60) が 55 以上である確率 X が 45 以上で 60以下である確率 X 考え方 と変換すると,正規分布の性質1から, は標準正規分布 にしたがう Z = (X − 50)/10 Z N(0,1)
Slide 82
Slide 82 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 37 「問題例」の2 面積 = P(45 ≤ X ≤ 60) = P(– 0.5 ≤ Z ≤ 1) X~N(50, 102) x f(x) 50 60 45 µ+1σ µ−0.5σ µ Z~N(0, 1) z f(z) 0 1 – 0.5 Z = (X – 50) / 10 のとき のとき X = 45 Z = (45 − 50)/10 = − 0.5 X = 60 Z = (60 − 50)/10 = 1 このグレーの部分の面積をどうやって求める? よって P(45 ≦ X ≦ 60) = P(−0.5 ≦ Z ≦ 1)
Slide 83
Slide 83 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 38 0 1 – 0.5 = + 0 1 0 ( – 0 – 0.5 ) パズルをおこなう 「問題例」の2 P(−0.5 ≦ Z ≦ 1) 1 P(Z ≦ − 0.5) P(Z ≧ 1)
Slide 84
Slide 84 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 38 0 1 – 0.5 = + 0 1 0 ( – 0 – 0.5 ) パズルをおこなう 「問題例」の2 P(−0.5 ≦ Z ≦ 1) 1 P(Z ≦ − 0.5) P(Z ≧ 1) 左右対称 なので
Slide 85
Slide 85 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 38 0 1 – 0.5 = + 0 1 0 ( – 0 – 0.5 ) パズルをおこなう 「問題例」の2 P(−0.5 ≦ Z ≦ 1) 1 P(Z ≦ − 0.5) P(Z ≧ 1) 0 0.5 左右対称 なので
Slide 86
Slide 86 text
38 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布にもとづく計算 38 0 1 – 0.5 = + 0 1 0 ( – 0 – 0.5 ) パズルをおこなう 「問題例」の2 P(−0.5 ≦ Z ≦ 1) 1 P(Z ≦ − 0.5) P(Z ≧ 1) = P(Z ≧ 0.5) 0 0.5 左右対称 なので