Slide 1

Slide 1 text

FUNCTIONAL PROGRAMMING CONCEPTS / 刘常洋 Rick Liu @rckviu

Slide 2

Slide 2 text

LAMBDA CALCULUS Alonzo Church, 1930s https://en.wikipedia.org/wiki/Lambda_calculus

Slide 3

Slide 3 text

CHURCH ENCODING Booleans, integers, (and other data structures) can be entirely replaced by lambda calculus! https://en.wikipedia.org/wiki/Church_encoding

Slide 4

Slide 4 text

zero one two true false λf . λx. x λf . λx. f (x) λf . λx. f (f (x) ⋮ λx. λy. x λx. λy. y

Slide 5

Slide 5 text

CHURCH THESIS Anything that is effectively computable can be computed by -Calculus λ https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

Slide 6

Slide 6 text

Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs John Backus IBM Research Laboratory, San Jose Turing award 1977 https://news.ycombinator.com/item?id=7671379

Slide 7

Slide 7 text

FUNCTIONAL PROGRAMMING using mathematical functions to perform calculations https://en.wikipedia.org/wiki/Functional_programming

Slide 8

Slide 8 text

FUNCTION is a relation between a set of input values and a set of output values

Slide 9

Slide 9 text

SQUARE 1 ⟶ 1 2 ⟶ 4 3 ⟶ 9 f (x) = x 2

Slide 10

Slide 10 text

Functions are definitions f (x) = { x 2 2x + 1 if x is even otherwise

Slide 11

Slide 11 text

FP CONCEPTS Functions as first class citizens Higher order functions Pure functions Lists and recursion Lazy evaluation Monads

Slide 12

Slide 12 text

FUNCTIONS AS FIRST CLASS CITIZENS

Slide 13

Slide 13 text

FP is programming with values, and functions are values

Slide 14

Slide 14 text

VALUES They can be created by the running program They can be assigned to variables They can be passed into functions They can be returned by functions

Slide 15

Slide 15 text

In Ruby, everything is an object.

Slide 16

Slide 16 text

FUNCTIONS IN RUBY Regular methods Callable objects

Slide 17

Slide 17 text

CALLABLE OBJECTS Proc lambda block Method

Slide 18

Slide 18 text

PROC add = Proc.new { |x, y| x + y } # Kernel#proc add = proc { |x, y| x + y } # Kernel#lambda add = lambda { |x, y| x + y } # => #Proc:0x0000010299a1d0 (lambda) # stabby lambda add = -> x, y { x + y }

Slide 19

Slide 19 text

BLOCK anonymous function def capture_block(&block) # a new proc is created block.call end capture_block { puts "Inside the block" }

Slide 20

Slide 20 text

METHOD AS OBJECT class Cat def talk puts "self is #{self}" end end c = Cat.new # => #Cat:0x00007faf60008888 m = c.method(:talk) # => #Method: Cat#talk m.call # => self is #Cat:0x00007faf60008888 http://ruby-doc.org/core/Object.html#method-i-method

Slide 21

Slide 21 text

CALLING CALLABLE OBJECTS add = -> x, y { x + y } add.call(1, 2) # => 3 add.(1, 2) # => 3 add[1, 2] # => 3

Slide 22

Slide 22 text

Symbol#to_proc ["ruby", "elixir"].map &:capitalize # => ["Ruby", "Elixir"]

Slide 23

Slide 23 text

Symbol#to_proc class Symbol def to_proc # naive implementation -> obj { obj.send(self) } end end http://ruby-doc.org/core/Symbol.html#method-i-to_proc

Slide 24

Slide 24 text

Generalizing #to_proc class Person < Struct.new(:name) def self.to_proc -> person { person.name } end end [Person.new("Jack"), Person.new("Rick")].map &Person # => ["Jack", "Rick"]

Slide 25

Slide 25 text

FUNCTION OBJECT class ColorFilter < Struct.new(:color) def to_proc -> item { item.color == self.color } end def call(list) list.select &self end end red_filter = ColorFilter.new(:red) red_filter.call(color_list) == color_list.select(&red_filter)

Slide 26

Slide 26 text

FP CONCEPTS Functions as first class citizens Higher order functions Pure functions Lists and recursion Lazy evaluation Monads

Slide 27

Slide 27 text

HIGHER-ORDER FUNCTION takes one or more functions as arguments or returns a function as its result https://en.wikipedia.org/wiki/Higher-order_function

Slide 28

Slide 28 text

FILTER filter = -> f, list { list.select &f } even = -> x { x % 2 == 0 } filter.(even, (1..10)) # => [2, 4, 6, 8, 10]

Slide 29

Slide 29 text

MAP map = -> f, list { list.map &f } double = -> x { x * 2 } map.(double, (1..5)) # => [2, 4, 6, 8, 10]

Slide 30

Slide 30 text

FOLD fold = -> f, init, list { list.reduce(init) { |a, b| f.(a, b) } } plus = -> x, y { x + y } fold.(plus, 0, (1..5)) # => 15

Slide 31

Slide 31 text

food = -> item { item.category == :food } price = -> item { item.price } fold(plus, 0, map(price, filter(food, items)))

Slide 32

Slide 32 text

FUNCTION COMPOSITION f (x) = x + 1 g(x) = x 2 f (g(2)) = 5 g(f (2)) = 9 f ∘ g(x) = + 1 x 2 g ∘ f (x) = (x + 1) 2

Slide 33

Slide 33 text

COMPOSE OPERATOR class Proc def ◦(other) -> (*args) { self.(other.(*args)) } end end even = -> x { x % 2 == 0 } square = -> x { x * x } add1 = -> x { x + 1 } # is (x + 1)^2 even? f = even.◦ square.◦ add1 f[1] # => true f[2] # => false

Slide 34

Slide 34 text

CURRYING Haskell Brooks Curry, (1900 - 1982) https://en.wikipedia.org/wiki/Currying

Slide 35

Slide 35 text

make_adder = -> x { -> y { x + y } } add1 = make_adder[1] add2 = make_adder[2] add1[3] # => 4 add2[3] # => 5

Slide 36

Slide 36 text

Proc#curry add = -> x, y, z { x + y + z } a = add.curry[1] a[2, 3] # => 6 a[2][3] # => 6 add.curry[1, 2][3] # => 6 add.curry[1][2][3] # => 6 http://ruby-doc.org/core/Method.html#method-i-curry

Slide 37

Slide 37 text

CLOSURES function + environment binding https://en.wikipedia.org/wiki/Closure_(computer_programming)

Slide 38

Slide 38 text

make_counter = -> amount { count = 0 -> { count += amount } } a = make_counter.(1) a.() # => 1 a.() # => 2 b = make_counter.(5) b.() # => 5 a.() # => 3

Slide 39

Slide 39 text

class Counter attr_reader :count def initialize(count: 0) @count = count end def inc @count += 1 self end end

Slide 40

Slide 40 text

Are objects and closures equivalent? http://wiki.c2.com/?ClosuresAndObjectsAreEquivalent

Slide 41

Slide 41 text

FP CONCEPTS Functions as first class citizens Higher order functions Pure functions Lists and recursion Lazy evaluation Monads

Slide 42

Slide 42 text

PURE FUNCTION Data in, data out No side effects parameters → f unction → result https://en.wikipedia.org/wiki/Pure_function

Slide 43

Slide 43 text

These functions aren't pure: def f(x) global_a = global_a + x end def h(x) print x + 1 end def g(x) x + read_y end

Slide 44

Slide 44 text

PURE FUNCTIONS Referential Transparency Immutability

Slide 45

Slide 45 text

REFERENTIAL TRANSPARENCY A expression can be replaced with its corresponding value without changing the program's behavior. https://en.wikipedia.org/wiki/Referential_transparency

Slide 46

Slide 46 text

Referentially transparent fact = -> n { n == 0 ? 1 : n * fact.(n - 1) } fact[0] # => 1 fact[1] # => 1 = 1 * fact[0] = 1 * 1 fact[2] # => 2 = 2 * fact[1] = 2 * 1 fact[3] # => 6 = 3 * fact[2] = 3 * 2

Slide 47

Slide 47 text

Referentially opaque print next_random() + next_random() # => 1 + 6 = 7 x = next_random() # => 2 print x + x # => 2 + 2 = 4

Slide 48

Slide 48 text

IMMUTABILITY A name is immutable if the name's value can't change. a = 3 double_a = 2 * a https://en.wikipedia.org/wiki/Immutable_object

Slide 49

Slide 49 text

# Not OK x = x + 1 total = 0 orders.each { |order| # Not OK total = total + order.amount } print total

Slide 50

Slide 50 text

IMMUTABLE OBJECT state cannot be modified a er it is created class Counter attr_reader :count def initialize(count: 0) @count = count end def inc self.class.new(count: count + 1) end end

Slide 51

Slide 51 text

BENEFITS OF PURE FUNCTIONS Can be reused without regard to context Easier to test and debug, reduce setup Avoid race condition and achieve thread safety Memoization

Slide 52

Slide 52 text

No Memoization fib = -> n { if n == 0 || n == 1 n else fib.(n-1) + fib.(n-2) end } (1..10).map &fib # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Slide 53

Slide 53 text

Controlled Memoization fib = -> (n, memo = {}) { if n == 0 || n == 1 n else memo[n] ||= fib.(n-1) + fib.(n-2) end } (1..10).map &fib # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Slide 54

Slide 54 text

Typical Haskell magic! memoized_fib = (map fib [0..] !!) where fib 0 = 0 fib 1 = 1 fib n = memoized_fib(n-2) + memoized_fib(n-1) https://wiki.haskell.org/Memoization

Slide 55

Slide 55 text

Imperative Shell, Functional Core Boundaries, by Gary Bernhardt, RubyConf 2012

Slide 56

Slide 56 text

FP CONCEPTS Functions as first class citizens Higher order functions Pure functions Lists and recursion Lazy evaluation Monads

Slide 57

Slide 57 text

LISTS AND RECURSION

Slide 58

Slide 58 text

LIST Sequence of elements of the same type Possibly empty [] Possibly finite [5,13,7] Possibly infinite [0,2,4,6,8,10,12,...] https://en.wikipedia.org/wiki/List_(abstract_data_type)

Slide 59

Slide 59 text

BASIC LIST OPERATIONS head : list -> value head([1,2,3]) = 1 tail : list -> list tail([1,2,3]) = [2,3] construct : value, list -> list construct(1, [2,3]) = [1,2,3] concatenate : list, list -> list concatenate([1,2], [8,10]) = [1,2,8,10]

Slide 60

Slide 60 text

CONSTRUCT construct : value, list -> list 3::[5,4,2,1] = [3,5,4,2,1] 8::[] = [8] h::t = [5,7,9,10] h = 5 t = [7,9,10]

Slide 61

Slide 61 text

RECURSION length : list -> number length([]) = 0 length(h::t) = 1 + length(t)

Slide 62

Slide 62 text

RECURSION findAt : list, number -> value findAt(h::t, 1) = h findAt(h::t, n) = findAt(t, n-1)

Slide 63

Slide 63 text

RECURSION reverse : list -> list reverse([]) = [] reverse(h::t) = concat(reverse(t), h)

Slide 64

Slide 64 text

Quciksort: functional style quicksort([]) = [] quicksort(h::t) = concatenate ( quicksort(filter(( x -> x < h), t)), [h], quicksort(filter(( x -> x >= h), t)) )

Slide 65

Slide 65 text

FP CONCEPTS Functions as first class citizens Higher order functions Pure functions Lists and recursion Lazy evaluation Monads

Slide 66

Slide 66 text

LAZY EVALUATION or call-by-need, is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations https://en.wikipedia.org/wiki/Lazy_evaluation

Slide 67

Slide 67 text

Eager (Strict) evaluation in Ruby # Infinite list (1..Float::INFINITY) .map { |i| i * i } .first(10) # never gonna end

Slide 68

Slide 68 text

Enumerator::lazy (1..Float::INFINITY) .lazy .map { |i| i * i } .first(10) # => [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] http://ruby-doc.org/core/Enumerable.html#method-i-lazy http://ruby-doc.org/core/Enumerator/Lazy.html

Slide 69

Slide 69 text

Use wrap function to achieve lazy evaluation wrapped_value = -> { slow_expression } # call-by-need wrapped_value.()

Slide 70

Slide 70 text

Lazy evaluation in Haskell take 10 [1..] # => [1,2,3,4,5,6,7,8,9,10] take 10 [ x+2 | x <- [ x*x | x <- [1..]]] # => [3,6,11,18,27,38,51,66,83,102] https://wiki.haskell.org/Lazy_evaluation

Slide 71

Slide 71 text

Lazy producer-consumer

Slide 72

Slide 72 text

I LIKE LAZINESS

Slide 73

Slide 73 text

FP CONCEPTS Functions as first class citizens Higher order functions Pure functions Lists and recursion Lazy evaluation Monads

Slide 74

Slide 74 text

MONADS

Slide 75

Slide 75 text

f (x) = − 8 1 − 4 x + 6 ‾ ‾ ‾‾‾ √ error = nil if x >= -6 y = sqrt(x + 6) - 4 if y == 0 error = true else z = 1 / y - 8 end else error = true end

Slide 76

Slide 76 text

MAYBE MONAD Define a new Maybe a float type Just a float value or Nothing

Slide 77

Slide 77 text

MAYBE MONAD sqrtMaybe : float -> Maybe a float sqrtMaybe(x) = if x >= 0 Just sqrt(x) else Nothing

Slide 78

Slide 78 text

MAYBE MONAD reciprocalMaybe : float -> Maybe a float reciprocalMaybe(x) = if x != 0 Just 1 / x else Nothing

Slide 79

Slide 79 text

FUNCTION COMPOSITION If you have Just y, apply f to y, getting Just f(y) or Nothing, if you have Nothing, get Nothing bind : Maybe a float, f -> Maybe a float

Slide 80

Slide 80 text

bind ( Just 4, sqrtMaybe ) # => Just 2 bind ( Just -1, sqrtMaybe ) # => Nothing bind ( Nothing, sqrtMaybe ) # => Nothing

Slide 81

Slide 81 text

f (x) = − 8 1 − 4 x + 6 ‾ ‾ ‾‾‾ √ bind( bind( bind(sqrtMaybe(x+6), minus4Maybe), reciprocalMaybe), minus8Maybe)

Slide 82

Slide 82 text

DATA PIPELINE sqrtMaybe(x+6) ⊳ minus4Maybe ⊳ reciprocalMaybe ⊳ minus8Maybe

Slide 83

Slide 83 text

MONAD 1. Define a data type, and rules of values 2. Create functions use the data type 3. Compose functions into actions with rules in #1 https://en.wikipedia.org/wiki/Monad_(functional_programming)

Slide 84

Slide 84 text

Refactoring Ruby with Monads Tom Stuart, 2014 https://codon.com/refactoring-ruby-with-monads

Slide 85

Slide 85 text

FP CONCEPTS Functions as first class citizens Higher order functions Pure functions Lists and recursion Lazy evaluation Monads

Slide 86

Slide 86 text

FUNCTIONAL MINDSET Data pipelines Composition Pure functions first Seperate side effects Immutable value objects Callable function objects Functional Abstractions

Slide 87

Slide 87 text

FP Better OO →