Slide 1

Slide 1 text

IoT縛りの勉強会! IoTLT vol.91 IoTリアル ピカチュウ 作ろうぜ! 株式会社B&B Lab. 代表取締役 眞崎康平 ©Pokémon. 理想 現実

Slide 2

Slide 2 text

Agenda 1. 注意事項 2. 発表者⾃⼰紹介 3. イントロダクション 4. 問題提起 5. 放電回路制作 6. More Power, More Voltage

Slide 3

Slide 3 text

注意事項 〇⾼電圧を取り扱うため、よいこの皆さんは絶対真似しないでください 〇みなさんいい⼤⼈なので、作品、キャラクターの世界観を尊重しましょう。 特に、浦安 在住の ⿊⿏には 絶対接続しないでください。 社会的に抹殺される恐れがあります。 本発表は、第三種電気主任技術者 資格ホルダーが 扱える範囲5万Vをまるで無視して、 10まんボルトに挑んでいますw ©ニコニコ ⼤百科

Slide 4

Slide 4 text

〇概要 ・設⽴ 2018年1⽉ ・資本⾦ 300万円 ・決算 6⽉ ・主な業務 IoT機器の開発 http://b-and-b-lab.jp/ ⼤⽊町のおお貴族 https://www.town.ooki.lg.jp/ookizoku/ 〇代表取締役 眞崎 康平(まさき こうへい) :ハードウェア開発担当 〇本社所在地 福岡県三潴郡⼤⽊町 業務キャリア ・SONY半導体(⿅児島、熊本、福岡)で10年弱、イメージセンサ開発に従事 対応領域 画像処理ソフトウェア開発、ハードウェア制御(Visual C++, VBA) 製品評価⼿法開発(CCD/CMOSイメージセンサ) ハードウェア開発(アナログ、デジタル) ・⾵⼒発電パワーコンディショナ開発(4年) 九州⼤学 応⽤⼒学研究所との産学協働プロジェクトにて レンズ⾵⾞向けパワーコンディショナ(制御器)開発 ⼤電⼒、⾼電圧回路設計 ・その他 医療ベンチャーetc. 〇共同設⽴者 中村 真理(なかむら しんり):クラウド、ファームウェア担当 業務キャリア ・バーテンダー ・診療放射線技師 ・ハイパーメディアクリエーター(⾃称) LINE API Expert 認定 発表者紹介 本⽇は⾺社⻑がお送りします。

Slide 5

Slide 5 text

イントロダクション(1/2) ピカチュウとは? 出展:ポケモンずかん https://zukan.pokemon.co.jp/detail/025 出展:Wikipedia https://ja.wikipedia.org/ピカチュウ ©Pokémon. Keyword: でんきぶくろ、10まんボルト

Slide 6

Slide 6 text

ピカチュウに対する先⾏研究 イントロダクション(2/2) 空想科学研究所KUSOLAB チャンネル登録者数 21.8万⼈ 『ポケモン』ピカチュウの電撃は「10万ボルト」。放電の様⼦から科学的に考えると 威⼒はそれ以上! ようつべで 数々の科学的検証の著書で有名な 柳⽥理科雄⽒がようつべで検証結果を公開中 https://www.youtube.com/watch?v=nt024QmfS1M

Slide 7

Slide 7 text

いい⼤⼈が、 クソ真⾯⽬にファンタージーを 議論して バカなんじゃねーの? 問題提起(1/2)

Slide 8

Slide 8 text

論より証拠! もっとバカな検証をやってやる! 問題提起(1/2) ※放電します

Slide 9

Slide 9 text

検証準備(1/4) ピカチュウゲットだぜ! ※きわどいことやるので正規ライセンス品を使⽤することを推奨します。

Slide 10

Slide 10 text

検証準備(2/4) マッドサイエンティストに改造⼿術はお約束w 電極の取付

Slide 11

Slide 11 text

検証準備(3/4)

Slide 12

Slide 12 text

検証準備(4/4) 技術的ポイント 1.でんきぶくろの周辺から放電するように導電性の⽷を使う 2.カプラー等を設ける場合には⾼圧⽤のものを使⽤する 3.電線の絶縁には要注意 電圧が⾼すぎるので絶縁被覆の上からでも感電します。

Slide 13

Slide 13 text

Warning!(1/2) シリコンコードがジーンズの両腿に垂れててこの威⼒! 3.電線の絶縁には要注意

Slide 14

Slide 14 text

Warning!(2/2) シリコンコードの上から、ガラス繊維チューブ、スパイラルチューブで絶縁強化!

Slide 15

Slide 15 text

放電回路制作(1/2) 出展:wikipedia https://ja.wikipedia.org/wiki/コッククロフト・ウォルトン回路 アマゾンで⾼電圧発⽣モジュールを 安く売ってるので、ポチればOK 中⾝はコッククロフト・ウォルトン回路らしい ※絶縁のため樹脂でモールドされている 予想外の威⼒に驚愕!激安でも超強⼒な電撃モジュールをご紹介します! https://www.youtube.com/watch?v=KeW9VMFCrs4

Slide 16

Slide 16 text

⼤きな電流が流れるので 強⼒な電源が必要 ⾚い透明なコードが⾼圧側 ※⾼電圧注意 ラズパイなり、ESP32なりお好きな マイコンのGPIOにつなげてください 放電回路制作(2/2) ⾼電圧モジュールをIoT 化する⽅法 ⇒これをピカチュウに接続 Gate Source Drain 適当なnチャネルパワーMOS-FETをスイッチとして 使い、マイコンのGPIO で制御する。

Slide 17

Slide 17 text

完成?

Slide 18

Slide 18 text

ポケモンゲットだぜ!!! スマホポチ(Webで公開) ピカチュウ放電! 動画リンク ※イベント参加中だったため 本件に関係ない⾳声が⼊ってます

Slide 19

Slide 19 text

こんなもので終わっては マッドサイエンティストの名が廃るwww

Slide 20

Slide 20 text

More Power! ⼒は正義!!! More Voltage 電圧こそ正義!

Slide 21

Slide 21 text

More Power, More Voltage(1/2) 4つ直列でさらに強化!!!! 制御はESP32 通信はEPS32内蔵のWifiで 最寄りのWifiアクセスポイント に接続したうえで MQTTで通信を⾏い制御する 安全のため キースイッチ搭載 安定動作のため ダイオードと 電解コンデンサ で放電時の 制御電圧を安定化

Slide 22

Slide 22 text

More Power, More Voltage(2/2) 懸念事項 1.⾼電圧化で⾼電圧モジュール間での絶縁破壊の懸念 2.⾼電圧ノイズによるマイコンの暴⾛対策(保険) http://www.iccraft.com/parts/ic/555_mono.html VF=1.2V IF=20mA Vin=5V R=(Vin-VF)/IF = 190 E12系列から チョイス⇒R=180Ω スイッチ+側 スイッチー側 1回の放電時間を可変抵抗で設定可能にする ワンショットタイマーで放電時間をハード的に制限 470kΩ 抵抗はOFF時の 反応時間のスピード アップ⽤ 定数は実験で求めた マイコンのGPIO ※絶縁されているため スイッチは プラス側でもマイナス側 でも問題 それぞれのモジュールを絶縁された別電源で動作可能にする GPIOで制御 フォトカプラへ

Slide 23

Slide 23 text

使⽤前 使⽤後 威⼒の違いをお楽しみくださいwww ※イベント参加中だったため 本件に関係ない⾳声が⼊ってます Youtube リンク Youtube リンク

Slide 24

Slide 24 text

代表 眞崎康平 [email protected] ご清聴ありがとうございました。 Presented By