Slide 1

Slide 1 text

The distribution of transcription times/delays Marc R. Roussel Alberta RNA Research and Training Institute Department of Chemistry and Biochemistry

Slide 2

Slide 2 text

Gene expression: the central dogma (in prokaryotes) DNA ⇓transcription (m/r/t)RNA ⇓translation (mRNA) Protein

Slide 3

Slide 3 text

Gene transcription Source: Wikimedia commons public domain image (https://commons.wikimedia.org/wiki/File:RNAP_TEC_small.jpg)

Slide 4

Slide 4 text

So why would you want to model transcription? Central process in living organisms To test our understanding of the biochemistry Rapid exploration of parameter space Discovery of unintuitive/unexpected properties of the process To generate probability distributions that can be used in differential equation models with distributed delays, or in fast delay-stochastic simulations Roussel and Zhu, Phys. Biol. 3, 274 (2006)

Slide 5

Slide 5 text

An example of a simple gene expression model Monk, Curr. Biol. 13, 1409 (2003) dM dt = αmG (P(t − τm)) − µmM dP dt = αpM(t − τp) − µpP G(x) = [1 + (x/p0)n] P: Hes1 protein . . . but we probably want (e.g.) dM dt = αm ∞ 0 G(P(t − τ)) ρ(τ) dτ − µmM.

Slide 6

Slide 6 text

A prokaryotic transcription model 6 U7 U8 U9 U ... 1 U2 U3 U4 O5 U RNA polymerase binding Polymerase + U1 k0 − − → O1 Activation of initial complex by 2 NTPs O1 k1 − − → A1 Activation by NTP Oi k3 − − → Ai Translocation Ai + Ui+1 k2 − − → Oi+1 + Ui Termination An k4 − − → Polymerase + RNA + Un Roussel and Zhu, Bull. Math. Biol. 68, 1681 (2006).

Slide 7

Slide 7 text

Solvable cases vs simulation The model is a Markov chain described by a master equation. Variables: joint probabilities that each site is in a specified state, e.g. p(O1, U[2,72] , A73, U[74,n−1] , On). Massive number of variables so solution is not feasible, but statistics can be obtained from stochastic simulations. The single-polymerase case is solvable. For shorter genes, we can compute ρ(τ). In general, we can recover all the moments of the distribution of transcription times.

Slide 8

Slide 8 text

Distribution of transcription times In our prokaryotic model, transcription consists of a sequence of steps i → i + 1. Jump time distributions obtained by solving conditional master equations The jumps are independent events, so their joint probability distribution is ρ(τ1, τ2, . . . , τn) = i ρi (τi ) The distribution of total transcription times is a convolution: ρ(τ) = · · · τi =τ ρ(τ1, τ2, . . . , τn) dτ1 dτ2 . . . dτn

Slide 9

Slide 9 text

Distribution of transcription times (continued) Using the convolution theorem for Laplace transforms, we get ˜ ρ(s) = i ˜ ρi (s) where ˜ f ≡ L(f ). Computing the inverse Laplace transform is possible but requires extended precision.

Slide 10

Slide 10 text

Moments of the distribution From the definition of the Laplace transform, ˜ ρ(s) = ∞ 0 e−sτ ρ(τ) dτ we get τm = ∞ 0 τmρ(τ) dτ = (−1)m dm ˜ ρ dsm s=0

Slide 11

Slide 11 text

Kurtosis Excess kurtosis: Measure of “peakedness”/“tailedness” γ2 = µ4 σ4 − 3 Aside: In many cases, γ2 really tells us whether different processes control the shape of the peak and tail. Special values: γ2 = 0 for a Gaussian. γ2 = 3 for a double exponential distribution. Heavy-tailed distribution: tails decay more slowly than an exponential

Slide 12

Slide 12 text

Kurtosis of the prokaryotic transcription model 1 2 3 4 5 6 7 8 9 10 200 400 600 800 1000 0 1 2 3 4 5 6 γ 2 k 0 /s-1 n γ 2 Polymerase + U1 k0 − − → O1 k1 = 8 s−1, k2 = 100 s−1, k3 = 100 s−1, k4 = 10 s−1

Slide 13

Slide 13 text

Distribution of transcription times k0 = 0.04 s−1 k1 = 8 s−1 k2 = 100 s−1 k3 = 100 s−1 k4 = 0.2 s−1 n = 250 nt γ2 = 5.56

Slide 14

Slide 14 text

Many-polymerase simulations ∆ minimum spacing

Slide 15

Slide 15 text

Distribution of transcription times Analytic distribution vs many-polymerase simulation 0 0.005 0.01 0.015 0.02 0.025 0.03 0 50 100 150 200 l(o)/s-1 o/s Analytic distribution 6 = 20 nt 6 = 40 nt 6 = 60 nt

Slide 16

Slide 16 text

An approximation to the single-polymerase distribution If (e.g.) k0 and k4 are significantly smaller than the other rate constants, then perhaps we can consider only those processes? ρ2(τ) = k0k4 k4 − k0 e−k0τ − e−k4τ (?) However, the fast processes have the effect of a fixed delay: τmin = 1 k1 + n − 1 k2 + n − 1 k3 . [Cooke and Grossman, J. Math. Anal. Appl. 86, 592 (1982)] If H(·) is the Heaviside function, the correct approximation is ρ(τ) ≈ H(τ − τmin)ρ2(τ − τmin)

Slide 17

Slide 17 text

Comparison of the approximate and exact distributions 0 0.005 0.01 0.015 0.02 0.025 0.03 0 20 40 60 80 100 120 140 ρ(τ)/s-1 τ/s Exact Approximate k0 = 0.04 s−1, k4 = 0.2 s−1, k1 = 8 s−1, k2 = 100 s−1, k3 = 100 s−1, n = 200 nt =⇒ τmin = 4.105 s

Slide 18

Slide 18 text

Noise minimization: an evolutionary possibility? 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 10-4 10-3 10-2 10-1 100 101 102 103 104 CV k1 /s-1 CV = σ τ O1 k1 − − → A1 k0 = 0.01 s−1, k2 = 10 s−1, k3 = 100 s−1, k4 = 0.1 s−1, n = 200 nt, ∆ = 40 nt

Slide 19

Slide 19 text

Single-polymerase theory fails under high traffic conditions 0.4 0.5 0.6 0.7 0.8 0.9 1 10-4 10-3 10-2 10-1 100 101 102 103 104 CV k4 /s-1 An k4 − − → Polymerase + RNA + Un k0 = 0.01 s−1, k1 = 5 s−1, k2 = 10 s−1, k3 = 100 s−1, n = 200 nt, ∆ = 40 nt

Slide 20

Slide 20 text

Phase transition from low- to high-traffic regime 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 ξ k 4 /s-1 ξ = bound RNAP max. bound RNAP k0 = 0.01 s−1, k1 = 5 s−1, k2 = 10 s−1, k3 = 100 s−1, n = 4614 nt, ∆ = 40 nt

Slide 21

Slide 21 text

Modularity Because of the product form of ˜ ρ(s), it is easy to replace parts of the model by modules expressing different biochemistry. A module could replace one or several steps. It is only necessary to be able to solve the corresponding survival time problem. Example: Pausing module to replace a simple elongation module Ok kp − − − − k−p Pk Ok k3 − − → Ak Ak + Uk k2 − − → Ok+1 + Uk

Slide 22

Slide 22 text

Excess kurtosis and pausing One pause-prone site, k0 = 0.04 s−1, k1 = 8 s−1, k2 = 100 s−1, k3 = 100 s−1, k4 = 0.2 s−1, k−p = 0.01 s−1, n = 250 nt

Slide 23

Slide 23 text

Future directions: eukaryotes Eukaryotic transcription model under active development Vashishtha, M.Sc. thesis, University of Lethbridge, 2011 Major complication in eukaryotes: co-transcriptional splicing Source: Wikimedia commons/OpenStax College (https://commons.wikimedia.org/wiki/File:0326_Splicing.jpg)

Slide 24

Slide 24 text

Acknowledgments Dr Rui Zhu Saurabh Vashishtha RJ Murphy Katherine Gzyl Eric Hill Dr Theodore Perkins (OHRI) Funding: Invitation: Silviu Niculescu Alban Quadrat

Slide 25

Slide 25 text

Lethbridge

Slide 26

Slide 26 text

References Prokaryotic model: Roussel and Zhu, Bull. Math. Biol. 68, 1681 (2006). Roussel, Biomath 2, 1307247 (2013). Eukaryotic model: Vashishtha, M.Sc. thesis, University of Lethbridge (2011) https://www.uleth.ca/dspace/handle/10133/3190