Slide 1

Slide 1 text

Strategies to boost electrical conductivity in porous materials: a computational perspective computational-experimental VII Colloquium on Computational Simulation in Sciences

Slide 2

Slide 2 text

Zn(II) ⇒ d0 benzene MOF-5 Physical and chemical processes: Gas adsorption & separation, catalysis Electro-inactive porous materials

Slide 3

Slide 3 text

Electroactivation Sensors Photocatalysis Electrocatalysis Batteries Supercapacitors

Slide 4

Slide 4 text

Electroactivation Sensors Photocatalysis Electrocatalysis Batteries Supercapacitors

Slide 5

Slide 5 text

Charge transport e.g. π-π stacking conducting pathways

Slide 6

Slide 6 text

Charge transport polaron e.g. π-π stacking conducting pathways

Slide 7

Slide 7 text

Computational materials design in a nutshell Methodologies Density Functional Theory High-correlated methods Semiempirical methods Molecular Mechanics Big-data Science Properties Geometry Electronic structure REDOX and magnetism Excited states Charge and energy transport

Slide 8

Slide 8 text

Tetrathiafulvalene (TTF) Electron donor molecule Facile oxidation π−π interactions 166º

Slide 9

Slide 9 text

Tetrathiafulvalene (TTF) Electron donor molecule Facile oxidation π−π interactions Charge Transport Model Molecular Electronics Supramolecular Chemistry 166º

Slide 10

Slide 10 text

Hydrogen-bonded Organic Frameworks H4 TTFTB MUV-20a MUV-20b MUV-21 σ = 6.07 × 10–7 S cm–1 σ = 1.35 × 10–6 S cm–1 σ = 6.23 × 10–9 S cm–1 Guillermo Mínguez (UV) María Vicent (UV)

Slide 11

Slide 11 text

Hydrogen-bonded Organic Frameworks H4 TTFTB MUV-20a MUV-20b MUV-21 σ = 6.07 × 10–7 S cm–1 σ = 1.35 × 10–6 S cm–1 σ = 6.23 × 10–9 S cm–1 PBEsol // HSE06 | FO-DFT

Slide 12

Slide 12 text

Hydrogen-bonded Organic Frameworks EPR MUV-20a MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation non-radical

Slide 13

Slide 13 text

Hydrogen-bonded Organic Frameworks EPR MUV-20a MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation non-radical + ‒

Slide 14

Slide 14 text

Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation non-radical + ‒

Slide 15

Slide 15 text

Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation SPIN DENSITY accumulated charge non-radical + ‒

Slide 16

Slide 16 text

Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation SPIN DENSITY accumulated charge non-radical + ‒

Slide 17

Slide 17 text

Hydrogen-bonded Organic Frameworks benzene naphthalene porosity electronic properties

Slide 18

Slide 18 text

Hydrogen-bonded Organic Frameworks benzene naphthalene porosity electronic properties

Slide 19

Slide 19 text

Perylene-based MOFs Perylene

Slide 20

Slide 20 text

Perylene-based MOFs Manel Souto (UA) Gonçalo Valente (UA) Perylene K+ PTC 8.6 Å Per-MOF Mol. Syst. Des. Eng., 2022,7, 1065-1072 σ = 10‒8 S·cm‒1

Slide 21

Slide 21 text

Perylene-based MOFs Manel Souto (UA) Gonçalo Valente (UA) σ = 10‒8 S·cm‒1 Iodine doping Perylene K+ PTC 8.6 Å Per-MOF Mol. Syst. Des. Eng., 2022,7, 1065-1072 Distances in Å I2 "I3 "

Slide 22

Slide 22 text

Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱 = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Perylene-based MOFs

Slide 23

Slide 23 text

Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱 = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Perylene-based MOFs

Slide 24

Slide 24 text

Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱 = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV I3 Spin density Perylene-based MOFs TD-HSE06/def2-SVP ─

Slide 25

Slide 25 text

Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱 = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Spin density Perylene-based MOFs Per-MOF: σ = 10‒8 S·cm‒1 I2 -doped Per-MOF: σ = 10‒5 S·cm‒1 TD-HSE06/def2-SVP I3 ─

Slide 26

Slide 26 text

Perylene-based MOFs σRT ~10-10 S/cm (pressed pellets) PerMOF: σRT ~10-8 S/cm (two-contact single-crystal)

Slide 27

Slide 27 text

Perylene-based MOFs σRT ~10-10 S/cm (pressed pellets) PerMOF: σRT ~10-8 S/cm (two-contact single-crystal) < 1m0 No relevant porosity

Slide 28

Slide 28 text

Perylene-based MOFs No relevant porosity Absorption and emission properties

Slide 29

Slide 29 text

Perylene-based MOFs ‒30 meV +70 meV +60 meV 559 nm 673 nm 663 nm excitonic coupling TD-DFT/PBE0/6-31G(d,p) Lowest-lying singlet excited state

Slide 30

Slide 30 text

Iron-based MOFs Chem. Sci., 2017, 8, 4450–4457 Mixed-valency Fe(II)/Fe(III)

Slide 31

Slide 31 text

Iron-based MOFs Chem. Sci., 2017, 8, 4450–4457 Mixed-valency Fe(II)/Fe(III) Fe2 (BDT)3 J. Am. Chem. Soc. 2018, 140, 7411–7414 Fe(II) σ = 10–4 – 1.8 S/cm

Slide 32

Slide 32 text

N N N NH N N N HN H2 BDT Iron-based MOFs BDT2– Fe(II) Fe2 (H0.67 BDT)3 (II) (2–) P2 P3 P1

Slide 33

Slide 33 text

Fe2 (BDT)3 Protonated Deprotonated (Cmmm) P1 Bandgap: ca. 2 eV

Slide 34

Slide 34 text

Fe2 (BDT)3 Protonated Deprotonated m* = 1.45 0.49 Bandgap: ca. 2 eV 2.52 (Cmmm) P1

Slide 35

Slide 35 text

Fe2 (BDT)3 Protonated 1.45 80.31 Γ to Z direction VBM T to Z direction CBM hole transport electron transport Deprotonated (Cmmm) P1

Slide 36

Slide 36 text

Fe2 (BDT)3 Protonated 1.45 80.31 Γ to Z direction VBM T to Z direction CBM hole transport electron transport Deprotonated Charge transport pathways (Cmmm) P1

Slide 37

Slide 37 text

Fe2 (BDT)3 Deprotonated (Fddd) 1.44 0.75 all flat Bandgap: ca. 3.1 eV P2

Slide 38

Slide 38 text

Fe2 (BDT)3 1.45 80.31 Γ to Z direction VBM CBM hole transport electron transport Deprotonated (Fddd) P2 Partially protonated directions

Slide 39

Slide 39 text

Fe2 (BDT)3 1.45 80.31 Γ to Z direction VBM CBM hole transport electron transport Deprotonated Partially protonated directions Charge transport pathways (Fddd) P2

Slide 40

Slide 40 text

Fe2 (BDT)3 (R-3m) Random distribution of protonated ligands 2.46 2.43 2.96 2.46 all flat Bandgap: ca. 2.2 eV P3

Slide 41

Slide 41 text

Fe2 (BDT)3 1.45 80.31 VBM CBM hole transport electron transport Random distribution of protonated ligands (R-3m) P3

Slide 42

Slide 42 text

Fe2 (BDT)3 1.45 80.31 VBM CBM hole transport electron transport Charge transport pathways Random distribution of protonated ligands h+ (R-3m) P3

Slide 43

Slide 43 text

Fe2 (BDT)3 Protonated axes Protonated axis Random protonation P3 P2 P1

Slide 44

Slide 44 text

 Cooperation between experiments and theoretical modelling allows boosting the development of electrically conducting porous materials.  TTF and perylene are interesting and versatile organic moieties as well as Fe(II)/Fe(III) pair for designing electroactive materials.  Strategies to enhance conductivity in porous frameworks: o Zwitterion species in a π-stacked assembly o Electroactive guests (charge transfer and carrier formation) o Mixed-valence and appropriate protonation pattern Conclusions

Slide 45

Slide 45 text

 Cooperation between experiments and theoretical modelling allows boosting the development of electrically conducting porous materials.  TTF and perylene are interesting and versatile organic moieties as well as Fe(II)/Fe(III) pair for designing electroactive materials.  Strategies to enhance conductivity in porous frameworks: o Zwitterion species in a π-stacked assembly o Electroactive guests (charge transfer and carrier formation) o Mixed-valence and appropriate protonation pattern Conclusions

Slide 46

Slide 46 text

 Cooperation between experiments and theoretical modelling allows boosting the development of electrically conducting porous materials.  TTF and perylene are interesting and versatile organic moieties as well as Fe(II)/Fe(III) pair for designing electroactive materials.  Strategies to enhance conductivity in porous frameworks: o Zwitterion species in a π-stacked assembly o Electroactive guests (charge transfer and carrier formation) o Mixed-valence and appropriate protonation pattern Conclusions

Slide 47

Slide 47 text

Guillermo Mínguez (UV) Acknowledgements Manel Souto (UA) María Esteve PID2020-119748GA-I00 funded by MCIN/AEI/10.13039/501100011033