Slide 1

Slide 1 text

ACTIVE SUBSPACES Emerging ideas for dimension reduction in computational science models PAUL CONSTANTINE Assistant Professor Department of Computer Science University of Colorado, Boulder activesubspaces.org! @DrPaulynomial! SLIDES AVAILABLE UPON REQUEST DISCLAIMER: These slides are meant to complement the oral presentation. Use out of context at your own risk. Thanks to: Qiqi Wang (MIT, AeroAstro) David Gleich (Purdue, CS) Rachel Ward (UT Austin, Math) Armin Eftekhari (Alan Turing Institute) Jeff Hokanson (CU Boulder, CS)

Slide 2

Slide 2 text

( u( s , t; x ) ) spatial / temporal classical physics, mechanics, applied mathematics parameter principal component analysis, Karhunen-Loève state model reduction POD, reduced basis, empirical interpolation, … see, e.g., Benner, Cohen, Ohlberger, and Willcox (SIAM, 2017) PDE solution space time parameters functional of interest What is dimension reduction? x 2 X ✓ Rm t 2 [0, T] ⇢ R s 2 ⌦ ⇢ R3 u 2 Wk,2 ⇢ L2 2 R

Slide 3

Slide 3 text

( u( s , t; x ) ) x 2 X ✓ Rm t 2 [0, T] ⇢ R s 2 ⌦ ⇢ R3 u 2 Wk,2 ⇢ L2 2 R functional of interest What is dimension reduction? x 7! How can we exploit the map from parameters to quantity-of-interest to reduce the parameter dimension? f( x ) parameters ASSUME PARAMETERS ARE INDEPENDENT

Slide 4

Slide 4 text

Hypersonic scramjet models Constantine, Emory, Larsson, and Iaccarino (2015) Aerospace design Lukaczyk, Palacios, Alonso, and Constantine (2014) Integrated hydrologic models Jefferson, Gilbert, Constantine, and Maxwell (2015) Solar cell models Constantine, Zaharatos, and Campanelli (2015) Magnetohydrodynamics models Glaws, Constantine, Shadid, and Wildey (2017) Ebola transmission models Diaz, Constantine, Kalmbach, Jones, and Pankavich (arXiv, 2016) Lithium ion battery model Constantine and Doostan (2017) Automobile design Othmer, Lukaczyk, Constantine, and Alonso (2016) f( x )

Slide 5

Slide 5 text

How many dimensions is high dimensions?

Slide 6

Slide 6 text

APPROXIMATION OPTIMIZATION INTEGRATION ˜ f( x ) ⇡ f( x ) minimize x f( x ) Z f( x ) d x

Slide 7

Slide 7 text

Number of parameters (the dimension) Number of model runs (at 10 points per dimension) Time for parameter study (at 1 second per run) 1 10 10 sec 2 100 ~ 1.6 min 3 1,000 ~ 16 min 4 10,000 ~ 2.7 hours 5 100,000 ~ 1.1 days 6 1,000,000 ~ 1.6 weeks … … … 20 1e20 3 trillion years (240x age of the universe) REDUCED-ORDER MODELS or PARALLEL PROCESSING

Slide 8

Slide 8 text

Number of parameters (the dimension) Number of model runs (at 10 points per dimension) Time for parameter study (at 1 second per run) 1 10 10 sec 2 100 ~ 1.6 min 3 1,000 ~ 16 min 4 10,000 ~ 2.7 hours 5 100,000 ~ 1.1 days 6 1,000,000 ~ 1.6 weeks … … … 20 1e20 3 trillion years (240x age of the universe) BETTER DESIGNS or ADAPTIVE SAMPLING

Slide 9

Slide 9 text

Number of parameters (the dimension) Number of model runs (at 10 points per dimension) Time for parameter study (at 1 second per run) 1 10 10 sec 2 100 ~ 1.6 min 3 1,000 ~ 16 min 4 10,000 ~ 2.7 hours 5 100,000 ~ 1.1 days 6 1,000,000 ~ 1.6 weeks … … … 20 1e20 3 trillion years (240x age of the universe) But how? CURSED BY DIMENSIONALITY? REDUCE THE DIMENSION!

Slide 10

Slide 10 text

f ( x ) ⇡ r X k=1 fk,1( x1) · · · fk,m( xm) f( x ) ⇡ p X k=1 ak k( x ), k a k0 ⌧ p f ( x ) ⇡ f1( x1) + · · · + fm( xm) Structure-exploiting methods STRUCTURE METHODS Separation of variables [Beylkin & Mohlenkamp (2005)], Tensor-train [Oseledets (2011)], Adaptive cross approximation [Bebendorff (2011)], Proper generalized decomposition [Chinesta et al. (2011)], … Compressed sensing [Donoho (2006), Candès & Wakin (2008)], … Sparse grids [Bungartz & Griebel (2004)], HDMR [Sobol (2003)], ANOVA [Hoeffding (1948)], …

Slide 11

Slide 11 text

“Even more understanding is lost if we consider each thing we can do to data only in terms of some set of very restrictive assumptions under which that thing is best possible---assumptions we know we CANNOT check in practice.” “Many algorithms … aim to diminish the ‘curse of dimensionality.’ Such algorithms take advantage of special properties of the functions being treated, such as alignment with the axes, but their authors do not always emphasize this aspect of their methods.”

Slide 12

Slide 12 text

www.youtube.com/watch?v=mJvKzjT6lmY

Slide 13

Slide 13 text

Design a jet nozzle under uncertainty (DARPA SEQUOIA project) 10-parameter engine performance model (See animation at https://youtu.be/Fek2HstkFVc)

Slide 14

Slide 14 text

f( x ) ⇡ g(UT x ) Ridge approximations UT : Rm ! Rn g : Rn ! R where Constantine, Eftekhari, Hokanson, and Ward (2017)

Slide 15

Slide 15 text

f( x ) ⇡ g(UT x ) Some relevant literature Approximation theory: Pinkus (2015), Diaconis and Shahshahani (1984) Compressed sensing: Fornasier et al. (2012), Cohen et al. (2012), Tyagi and Cevher (2014) Statistical regression: Friedman and Stuetzle (1981), Xia et al. (2002) Uncertainty quantification: Tipireddy and Ghanem (2014); Lei et al. (2015); Stoyanov and Webster (2015); Tripathy, Bilionis, and Gonzalez (2016); Li, Lin, and Li (2016); … Ridge approximations

Slide 16

Slide 16 text

f( x ) ⇡ g(UT x ) What is U? What is the approximation error? What is g? Constantine, Eftekhari, Hokanson, and Ward (2017) Ridge approximations

Slide 17

Slide 17 text

C = Z rf( x ) rf( x )T ⇢( x ) d x = W ⇤W T Define the active subspace The average outer product of the gradient and its eigendecomposition, Partition the eigendecomposition, Rotate and separate the coordinates, ⇤ =  ⇤1 ⇤2 , W = ⇥ W 1 W 2 ⇤ , W 1 2 Rm⇥n x = W W T x = W 1W T 1 x + W 2W T 2 x = W 1y + W 2z active variables inactive variables f = f( x ), x 2 Rm, rf( x ) 2 Rm, ⇢ : Rm ! R + Constantine, Dow, and Wang (2014) Some relevant literature Statistical regression: Samarov (1993), Hristache et al. (2001) Machine learning: Mukerjee, Wu, and Xiao (2010); Fukumizu and Leng (2014) Detection and estimation theory: van Trees (2001) The function, its gradient vector, and a given weight function:

Slide 18

Slide 18 text

C = Z rf( x ) rf( x )T ⇢( x ) d x = W ⇤W T Define the active subspace The function, its gradient vector, and a given weight function: The average outer product of the gradient and its eigendecomposition: f = f( x ), x 2 Rm, rf( x ) 2 Rm, ⇢ : Rm ! R + Constantine, Dow, and Wang (2014) i = Z w T i rf( x ) 2 ⇢( x ) d x , i = 1, . . . , m average, squared, directional derivative along eigenvector eigenvalue Eigenvalues measure ridge structure with eigenvectors:

Slide 19

Slide 19 text

(1) Draw samples: (2) Compute: and fj = f( xj) (3) Approximate with Monte Carlo, and compute eigendecomposition Equivalent to SVD of samples of the gradient Called an active subspace method in T. Russi’s 2010 Ph.D. thesis, Uncertainty Quantification with Experimental Data in Complex System Models C ⇡ 1 N N X j=1 rfj rfT j = ˆ W ˆ ⇤ ˆ W T 1 p N ⇥ rf1 · · · rfN ⇤ = ˆ W p ˆ ⇤ ˆ V T rfj = rf( xj) Constantine, Dow, and Wang (2014), Constantine and Gleich (2015, arXiv) xj ⇠ ⇢( x ) Estimate the active subspace with Monte Carlo

Slide 20

Slide 20 text

1 p N ⇥ rf1 · · · rfN ⇤ ⇡ ˆ W 1 q ˆ ⇤1 ˆ V T 1 Low-rank approximation of the collection of gradients: Low-dimensional linear approximation of the gradient: f( x ) ⇡ g ⇣ ˆ W T 1 x ⌘ Approximate a function of many variables by a function of a few linear combinations of the variables: ✔ ✖ ✖ Remember the problem to solve span ( ˆ W 1) ⇡ { rf( x ) : x 2 supp ⇢( x ) }

Slide 21

Slide 21 text

conditional average active subspace Poincaré constant eigenvalues associated with inactive subspace f( x ) µ(W T 1 x ) L2(⇢)  C ( n+1 + · · · + m)1 2 Constantine, Dow, and Wang (2014) But is that the smallest error? The eigenvalues measure the approximation error

Slide 22

Slide 22 text

f( x ) ⇡ g(UT x ) What is U? Define the error function: R(U) = 1 2 Z (f( x ) µ(UT x ))2 ⇢( x ) d x Minimize the error: minimize U R ( U ) subject to U 2 G ( n, m ) Grassmann manifold of n-dimensional subspaces Constantine, Eftekhari, Hokanson, and Ward (2017) Ridge approximations best approximation

Slide 23

Slide 23 text

(1) Draw samples: (2) Compute: fj = f( xj) (3) Minimize the misfit Minimize over polynomials and subspaces Constantine, Eftekhari, Hokanson, and Ward (2017), Hokanson and Constantine (2017, arXiv) xj ⇠ ⇢( x ) Estimate the optimal subspace with discrete least squares minimize g2P p(Rn) U2G(n,m) N X j=1 ⇣ fj g(UT xj) ⌘2

Slide 24

Slide 24 text

Assessing ridge or near-ridge structure Z rf( x ) rf( x )T ⇢( x ) d x Derivative-based ideas: eigenvalues reveal structure, eigenvectors give directions Active subspaces [Constantine et al. (2014), Russi (2010)], Gradient outer product [Mukherjee et al. (2010)], Outer product of gradient [Hristache et al. (2001)] Z r2f( x ) ⇢( x ) d x Principal Hessian directions [Li (1992)], Likelihood-informed subspaces [Cui et al. (2014)] Ideas for approximating these without gradients: finite differences [Constantine & Gleich (2015), Lewis et al. (2016)], polynomial approximations [Yang et al (2016), Tippireddy & Ghanem (2014)], kernel approximations [Fukumizu & Leng (2014)] See Samarov’s average derivative functionals [Samarov (1993)]

Slide 25

Slide 25 text

Assessing ridge or near-ridge structure Sufficient dimension reduction ideas: eigenvalues reveal structure, eigenvectors give directions Sliced inverse regression [Li (1991)] Sliced average variance estimation [Cook & Weisberg (1991)] E ⇥ E[ x |f] E[ x |f]T ⇤ E h ( I Cov[x |f ]) 2 i E ⇥ ( x1 x2) ( x1 x2)T | |f( x1) f( x2)|  ⇤ Contour regression [Li et al. (2005)] These are population metrics. Data produces sample estimates.

Slide 26

Slide 26 text

minimize g, U f( x ) g(UT x ) Assessing ridge or near-ridge structure Optimization ideas: optimum residual suggests structure, optimizer gives directions Ridge approximation [Constantine et al. (2017)], Minimum average variance estimation [Xia et al. (2002)], Gaussian processes [Vivarelli & Wiliams (1999), Tripathy et al. (2016)] Projection pursuit regression [Friedman & Stuetzle (1981), Huber (1985)] Likelihood-based sufficient dimension reduction [Cook & Forzani (2009)] minimize gi, ui f( x ) X i gi( u T i x ) ! maximize U E [ k PU Cov[x |f ] PU k ⇤ ] All nonconvex optimizations. Some on Grassmann manifold of subspaces.

Slide 27

Slide 27 text

(1)  Exploitable + for dimension reduction, not just cheap surrogate (2)  Insights + which variables are important (3)  Discoverable / checkable + eigenvalues + non-residual metrics: + plots in 1 and 2d E[ Var[ f | UT x ] ] Why I like ridge structure

Slide 28

Slide 28 text

Do real world models have such structure?

Slide 29

Slide 29 text

Hypersonic scramjet models Constantine, Emory, Larsson, and Iaccarino (2015) Evidence of active subspaces across science and engineering models

Slide 30

Slide 30 text

Integrated jet nozzle models Alonso, Eldred, Constantine, Duraisamy, Farhat, Iaccarino, and Jakeman (2017) Evidence of active subspaces across science and engineering models

Slide 31

Slide 31 text

Integrated hydrologic models Jefferson, Gilbert, Constantine, and Maxwell (2015) Evidence of active subspaces across science and engineering models

Slide 32

Slide 32 text

−2 −1 0 1 2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Active Variable 1 Lift Lukaczyk, Constantine, Palacios, and Alonso (2014) Evidence of active subspaces across science and engineering models −2 −1 0 1 2 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Active Variable 1 Drag Aerospace vehicle geometries

Slide 33

Slide 33 text

In-host HIV dynamical models T-cell count Loudon and Pankavich (2016) Evidence of active subspaces across science and engineering models

Slide 34

Slide 34 text

Solar cell circuit models −2 −1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 Active Variable 1 P max (watts) Constantine, Zaharatos, and Campanelli (2015) Evidence of active subspaces across science and engineering models

Slide 35

Slide 35 text

Atmospheric reentry vehicle model Cortesi, Constantine, Magin, and Congedo (2017) Evidence of active subspaces across science and engineering models −1 0 1 ˆ wT q x 0.4 0.6 0.8 1.0 1.2 Stagnation heat flux qst ×107 −1 0 1 ˆ wT p x 20000 40000 60000 80000 100000 Stagnation pressure pst

Slide 36

Slide 36 text

Magnetohydrodynamics generator model -1 0 1 wT 1 x 0 5 10 15 f(x) Average velocity Glaws, Constantine, Shadid, and Wildey (2017) Evidence of active subspaces across science and engineering models -1 0 1 wT 1 x 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 f(x) Induce magnetic field

Slide 37

Slide 37 text

Lithium ion battery model 2 0 2 wT x 3.65 3.70 Voltage [V] Constantine and Doostan (2017) Evidence of active subspaces across science and engineering models 2 0 2 wT x 2.0 2.2 Capacity [mAh·cm 2]

Slide 38

Slide 38 text

Automobile geometries Othmer, Lukaczyk, Constantine, and Alonso (2016) Evidence of active subspaces across science and engineering models

Slide 39

Slide 39 text

-4 -2 0 2 4 Quantity of interest #10-3 0 1 2 3 4 5 -4 -2 0 2 4 Quantity of interest #10-4 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 Long length scale Short length scale Evidence of active subspaces across science and engineering models Constantine, Dow, and Wang (2014) r · (aru) = 1, s 2 D u = 0, s 2 1 n · aru = 0, s 2 2 Input field Solution Short corr Long corr

Slide 40

Slide 40 text

f( x ) Jupyter notebooks: github.com/paulcon/as-data-sets

Slide 41

Slide 41 text

www.siam.org/meetings/dr17/ http://www.siam.org/journals/juq/juq_special.php SUBMISSIONS DUE NOVEMBER 1!!!

Slide 42

Slide 42 text

How do the eigenspace-based active subspaces relate to the optimization-based subspaces? Why do all those models exhibit similar structure? What if my model doesn’t fit your setup? (no gradients, multiple outputs, correlated inputs, …) PAUL CONSTANTINE Assistant Professor University of Colorado Boulder activesubspaces.org! @DrPaulynomial! QUESTIONS? Active Subspaces SIAM (2015)