Slide 1

Slide 1 text

[email protected] www.rittmanmead.com @rittmanmead Oracle Data Visualization Desktop v3 Francesco Tisiot, BI Tech Lead, Rittman Mead 1 V4

Slide 2

Slide 2 text

[email protected] www.rittmanmead.com @rittmanmead 2 Francesco Tisiot BI Tech Lead at Rittman Mead Verona, Italy Rittman Mead Blog 10 Years Experience in BI/Analytics [email protected] @FTisiot

Slide 3

Slide 3 text

[email protected] www.rittmanmead.com @rittmanmead 3 Oracle Data Visualization Desktop - Available for Win and Mac - Self Service Analytics - Data Preparation and Discovery - Data Mashups - Storytelling and Content Sharing Photo by Jesus Kiteque on Unsplash https://www.rittmanmead.com/blog/2017/07/oracle-data-visualization-desktop-v3-new-features/

Slide 4

Slide 4 text

[email protected] www.rittmanmead.com @rittmanmead 4 • Download: Oracle Website • Licensing: - OBIEE’s Data Visualization Option - OAC/BICS/DVCS Photo by Fabian Blank on Unsplash

Slide 5

Slide 5 text

[email protected] www.rittmanmead.com @rittmanmead Sources Data Flow Data Visualisations Integrations Machine Learning 5 Photo by Igor Ovsyannykov on Unsplash

Slide 6

Slide 6 text

[email protected] www.rittmanmead.com @rittmanmead 6 New Home Page - Adaptive - Customizable - What’s New - Projects - Data Sets Photo by Christelle BOURGEOIS on Unsplash

Slide 7

Slide 7 text

[email protected] www.rittmanmead.com @rittmanmead 7 Sources - DB - SQL on Hadoop - Document Storage - OBIEE - Oracle Docs - OData - JDBC - ODBC - Oracle Big Data Cloud - Oracle Data Warehouse Cloud - Oracle Service Cloud - Oracle Talent Acquisition Cloud Photo by Glen Carrie on Unsplash

Slide 8

Slide 8 text

[email protected] www.rittmanmead.com @rittmanmead 8 Photo by Adam Sherez on Unsplash Data Flow - Merge - Filter - Aggregate - Merge Rows (Union) - Enhanced Filtering - Create Essbase Cube - Cumulative Value - Machine Learning - Create Group - Binning - Forecast/Sentiment Analysis - Data Flow Sequence - Custom Scripts V4 - Convert To Date - Time Level Grain - Save to Hive Table or Oracle DB V3

Slide 9

Slide 9 text

[email protected] www.rittmanmead.com @rittmanmead 9 Data Visualisation - Trendline Confidence Levels - Top/Bottom N - Waterfall - BoxPlot Photo by Felix Mooneeram on Unsplash - Percent Of - Auto Binning of Metrics - Connection Renaming - Unrelated Data Sources in the Same Canvas - New Narrative Experience - New Properties Panel - Copy/Duplicate Viz - Pin Filter to All Canvases - Data Actions - Data/Time Levels V4 V3

Slide 10

Slide 10 text

[email protected] www.rittmanmead.com @rittmanmead 10 Machine Learning - Requires Additional Installation - Attribute Explain - Train Models ‣ Numeric Predictions ‣ Multi Classification ‣ Clustering ‣ Binary Classifier ‣ Custom - R/Python - Visualize Quality Metrics - Apply Trained Model in Data-Flow Photo by Felix Mooneeram on Unsplash

Slide 11

Slide 11 text

[email protected] www.rittmanmead.com @rittmanmead 11 Console - Plugin - Samples Photo by Denisse Leon on Unsplash - Advanced Analytics - Map Layers - Custom ML Models

Slide 12

Slide 12 text

[email protected] www.rittmanmead.com @rittmanmead 12 https://www.oracle.com/solutions/business-analytics/data-visualization/library.html

Slide 13

Slide 13 text

[email protected] www.rittmanmead.com @rittmanmead 13 Example - Football Prediction: Goal Scored - Dataset: Important Actions in European Matches - Sequence of Flows • Joiner • Filtering - Data Before/After 70th Minute • Data Model - Prediction • Random Forest Binary ML Model Photo by Mahkeo on Unsplash

Slide 14

Slide 14 text

[email protected] www.rittmanmead.com @rittmanmead 14 Photo by Mahkeo on Unsplash Minute: 2 Player: Pirlo Team: Juventus Shot_from: Midfield is_goal: No Minute: 23 Player: Ronaldo Team: Real Madrid Shot_from: Corner is_goal: Yes Minute: 70 Minute: 73 Player: Messi Team: Barcelona Shot_from: Post is_goal: ??? Training Dataset Testing Dataset

Slide 15

Slide 15 text

[email protected] www.rittmanmead.com @rittmanmead Explain 15

Slide 16

Slide 16 text

[email protected] www.rittmanmead.com @rittmanmead Key Drivers 16

Slide 17

Slide 17 text

[email protected] www.rittmanmead.com @rittmanmead Segments 17

Slide 18

Slide 18 text

[email protected] www.rittmanmead.com @rittmanmead Anomalies 18

Slide 19

Slide 19 text

[email protected] www.rittmanmead.com @rittmanmead ML Binary Classification Data Model 19 • Based on ‣ Player ‣ Team ‣ Location ‣ Target

Slide 20

Slide 20 text

[email protected] www.rittmanmead.com @rittmanmead Results 20

Slide 21

Slide 21 text

[email protected] www.rittmanmead.com @rittmanmead 21 Follow: @UKOUG 4-6 December 2017 | ICC Birmingham Don’t miss out on this year’s Conferences. With our strategically positioned agenda, this year will provide Oracle end users & partners with the latest information around current best practices and trends. We have content on: Apps Tech | HCM | CX | Cloud | Business Analytics | Business & Strategy | PeopleSoft | E-Business Suite Financials & SCM Database | APEX | Development | Middleware | Business Analytics | Systems Registration is open and the agenda’s are live. Keep up to date by following #ukoug_apps17 #ukoug_tech17 Thank you to our sponsors: Tech17 Registration sponsor:

Slide 22

Slide 22 text

[email protected] www.rittmanmead.com @rittmanmead Demo 22

Slide 23

Slide 23 text

[email protected] www.rittmanmead.com @rittmanmead Q & A 23