Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
Using RLlib in an enterprise scale reinforcement learning solution Ray Summit 2021 Jeroen Bédorf, jeroen@minds.ai Ishaan Sood, ishaan@minds.ai
Slide 2
Slide 2 text
©minds.ai Problem Statements Integration and usage of RLlib and Tune DeepSim Platform Adaptive Cruise Control Demo Hybrid Electric Vehicle Demo Outline
Slide 3
Slide 3 text
©minds.ai Trend: Exploding complexity and proliferation of smart systems DeepSim: Bring RL to Subject Matter Experts Electrification Autonomy Automation Renewables
Slide 4
Slide 4 text
©minds.ai DeepSim: Bring RL to Subject Matter Experts Controllers: Brains behind complex systems Reinforcement Learning Controllers: Trained for operating complex systems PID Controller Process Feedback Input Output RL Agent (neural network) Environment Input Output
Slide 5
Slide 5 text
©minds.ai DeepSim: Platform Overview Environment Integration & Scenario support Training libraries Data Analysis & Visualization Toolkit HPO & NAS Neural Network Models & definition method Front end TFAgents RLlib Ray Internal MPI Horovod Tune Internal Public Cloud Backend Algorithms Distribution method
Slide 6
Slide 6 text
©minds.ai DeepSim: Usage of Ray, RLlib and Tune Custom Action Distributions Easy Model Definition Method Custom Logging Custom Models Export Methods Analysis Tools RLlib Tune Ray Inference Methods
Slide 7
Slide 7 text
©minds.ai Typical end-user workflow Configure simulation, reward, etc. Status & Progress information Export trained Agent 1 2 3 Set up training runs (HPO & NAS) Tune Train
Slide 8
Slide 8 text
©minds.ai Optimizer (ONNX, TensorRT, etc.) Trained Agent Ray Serve Embedded Laptop/Workstation Inference System / Controller RLlib Checkpoint Inference Library Deployment
Slide 9
Slide 9 text
©minds.ai. Use Cases