Slide 1

Slide 1 text

EXPLORATORY Online Seminar #48 Exploratory v6.6

Slide 2

Slide 2 text

Kan Nishida CEO/co-founder Exploratory Summary In Spring 2016, launched Exploratory, Inc. to democratize Data Science. Prior to Exploratory, Kan was a director of product development at Oracle leading teams to build various Data Science products in areas including Machine Learning, BI, Data Visualization, Mobile Analytics, Big Data, etc. While at Oracle, Kan also provided training and consulting services to help organizations transform with data. @KanAugust Speaker

Slide 3

Slide 3 text

3 Data Science is not just for Engineers and Statisticians. Exploratory makes it possible for Everyone to do Data Science. The Third Wave

Slide 4

Slide 4 text

4 Questions Communication Data Access Data Wrangling Visualization Analytics (Statistics / Machine Learning) Data Science Workflow

Slide 5

Slide 5 text

5 Questions Communication (Dashboard, Note, Slides) Data Access Data Wrangling Visualization Analytics (Statistics / Machine Learning) ExploratoryɹModern & Simple UI

Slide 6

Slide 6 text

EXPLORATORY Online Seminar #48 Exploratory v6.6

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

UI SQL 2 Modes

Slide 9

Slide 9 text

UI

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

UI SQL 2 Modes

Slide 13

Slide 13 text

SQL (SOQL)

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

• Salesforce • SQL Data Import Dialog: Table Search Support Data Source

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

Summary View

Slide 19

Slide 19 text

• Correlation ModeɿVisualization Updates • Correlation ModeɿMachine Learning Models • Data Export Summary View

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

You can turn on the Prediction to show the predicted values.

Slide 23

Slide 23 text

You can switch between the algorithms for the prediction.

Slide 24

Slide 24 text

When the target variable is Logical it will show the logistic curve.

Slide 25

Slide 25 text

You can export the data you see in the Summary View!

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

You can export the data you see in the Correlation Mode as well!

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

Analytics Text Analysis Factor Analysis

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

• Error Bar (Summarized Data) • Search for Table • Export to Google Sheet Chart

Slide 39

Slide 39 text

Error Bar can be used to visualize ‘uncertainty’ or Confidence Interval.

Slide 40

Slide 40 text

It expects the data to be ‘non aggregated’.

Slide 41

Slide 41 text

But, if the data is already aggregated…

Slide 42

Slide 42 text

This is when you want to use the new Error Bar (Summarized Data) type.

Slide 43

Slide 43 text

You can assign a column for Numerator and a column for Denominator. Numerator Denominator Bounces Sessions Bounce Rate =

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

Calendar Widget

Slide 47

Slide 47 text

R 4.1 Upgrade

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

Performance - M1 Mac (Apple Silicon) CSV File Import 2x αϚϦɾϏϡʔ - ϕʔγοΫ αϚϦɾϏϡʔ - ૬ؔϞʔυ 2.5x 1.5x

Slide 50

Slide 50 text

2x 2.5x 1.5x Faster! 🚀 R 4.0 (Intel) vs. R4.1 for M1 Mac (Apple Silicon)

Slide 51

Slide 51 text

No content

Slide 52

Slide 52 text

That’s it for today!

Slide 53

Slide 53 text

Next Seminar

Slide 54

Slide 54 text

EXPLORATORY Online Seminar #49 6/23/2021 (Wed) 11AM PT Introduction to Dashboard

Slide 55

Slide 55 text

No content

Slide 56

Slide 56 text

Information Email kan@exploratory.io Website https://exploratory.io Twitter @ExploratoryData Seminar https://exploratory.io/online-seminar

Slide 57

Slide 57 text

Q & A 57

Slide 58

Slide 58 text

EXPLORATORY 58