Slide 35
Slide 35 text
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix,accuracy_score
df = pd.read_csv('payment_fraud.csv')
print(df.sample(3))
df = pd.get_dummies(df,columns=['paymentMethod'])
Y = df['label']
X = df.drop('label',axis=1)
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3)
clf = LogisticRegression()
clf.fit(X_train,Y_train)
Y_pred = clf.predict(X_test)
print(confusion_matrix(Y_test,Y_pred))
print("Precision",accuracy_score(Y_test,Y_test))
Detección de fraude