Slide 13
Slide 13 text
参考文献
13
[1] D. P. Kingma, and P. Dhariwal, Glow: Generative Flow with Invertible 1×1
Convolutions. arXiv preprint, arXiv:1807.03039v2 (2018).
[2] J. Regier, et al., Celeste: Variational inference for a generative model of
astronomical images. arXiv preprint, arXiv:1506.01351 (2015).
[3] A. van den Oord, et al. WaveNet: A Generative Model for Raw Audio. arXiv
preprint, arXiv:1609.03499 (2016).
[4] R. Gómez-Bombarelli, et al. Automatic chemical design using a data-driven
continuous representation of molecules. arXiv preprint, arXiv:1610.02415x3
(2016).
[5] https://www.youtube.com/watch?v=JrO5fSskISY
[6] http://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
[7] L. Dinh, L. Sohl-Dickstein, and S. Bengio, Density estimation using Real NVP.
arXiv preprint, arXiv:1605.08803 (2016).
[8] L. Dinh, D. Krueger, and Y. Bengio, Nice: non-linear independent components
estimation. arXiv preprint, arXiv:1410.8516 (2014).
[9] F. Noe and H. Wu, Boltzmann Generators – Sampling Equilibrium States of Many-
Body Systems with Deep Learning. arXiv preprint, arXiv:1812.01729 (2018).
[10] M. S. Albergo, G. Kanwar, and P. E. Shanahan, Flow-based generative models
for Markov chain Monte Carlo in lattice field theory. arXiv preprint, arXiv:
1904.12072v2 (2019).