Slide 1

Slide 1 text

P4とICTSCにおいての 利活用例 Takeru Hayasaka(@takemioIO) 2021/03/07 ICTSC2020 LT会 https://unsplash.com/photos/JLkx0lRkXuk 1

Slide 2

Slide 2 text

アウトライン 1. Overview: P4とは 2. NAVTと実装について 3. まとめと感想 2

Slide 3

Slide 3 text

Overview https://unsplash.com/photos/ur7BDi9MpXg 3

Slide 4

Slide 4 text

パケット処理はどこでやる? • パケット処理可能な場所がいくつか存在する • Software?Hardware? • UserLand?KernelLand? • FPGA?ASIC?TPU?こんがり焼いた独自の石? • 処理技術も手法もいくつかある • LKM/netfliter queue/socket programing.. • XDP/ebpf/DPDK/netmap/PF_RING... • openflow/P4/SR-IOV/SmartNIC/Whitebox... • RSS/RPF/RFS/XPS... 4

Slide 5

Slide 5 text

ASICスイッチ • 近年ではパケット処理の速度がソフトウェアでは頭打ちへ CPU性能あたりの処理性能からASICを利用しつつ自由度の高い Programmable switchを選ぶようになってきた • CPU: 固定化された汎用チップ(ハーバード、フォンノイマン型など)に加え てGPIO,USBなどのペリフェラルが入ってるやつ • FPGA: NANDなどできており、VHDLなどで書くと任意の回路を構築できる チップ • ASIC: 特定分野に特化したチップ. CPU, mem, 特定のパイプライン など従来の構成から肉抜きしたり増したりなどをした専用チップ つまりドメイン特化型のプロセッサの例となる 5

Slide 6

Slide 6 text

ASICスイッチを動かすOS(NOS) • 商用 • ArcOS (Arrcus) • Cumulus(NVIDIA) ←今年も使ってたNOS • OcNOS (IP Infusion) • PicOS(Pica 8) • OSS • SONiC(frr-rpm + driver) • DENT(switchdev) • RARE(P4Runtime + P4)←今日の話はこれ これらを動かすOSひとつとってもかなりの種類があり、 また参画してる会社を見ても大規模データセンターでの 流行が見て取れることがわかる 6

Slide 7

Slide 7 text

P4: パケット処理特化プログラミング言語 P4: Programming Protocol-Independent Packet Processors ASICなどの専用ハードをターゲットとする プログラミング言語で、アーキテクチャごとのライブラリ とそれをもとにP4でパケット処理系を書くことができる 以下の図はP4の全体アーキテクチャ 7 cf. https://p4.org/assets/P4_D2_East_2018_01_basics.pdf

Slide 8

Slide 8 text

P4Switchアーキテクチャ 処理に関してもハードウェアごとにアーキテクチャがある 以下はBMv2と言われるP4で動くSoftwareSwitchだが 実際のハードウェアでも以下のように 「parser」「ingress」「egress」「deparser」でコンポーネント パケットを解析しつつ処理を行い最後に構築するというパイプラインで処理 される 8 cf. https://p4.org/assets/P4_D2_East_2018_01_basics.pdf

Slide 9

Slide 9 text

NAVTと実装について https://unsplash.com/photos/baII27W6z7k 9

Slide 10

Slide 10 text

NAVTの歴史 ICTSC6: LKMで実装 ICTSC7: Openflow+Ryu ICTSC8: LKM, ARP動的解決対応 ICTSC9-2018: Openflow+Ryu(7と同じ) ICTSC2019: VPP SRv6 Function化(NAVTではなくこれは普通のNAT) 今回は.... P4 で 100GbE Ready!初めてのHW動作化!!!!! 10

Slide 11

Slide 11 text

NAVT with P4 Switch ● NAVT: Network Address VLAN Translation ○ トラコンの問題環境を支える変換プロトコル IP: src=172.16.2.1, dst=10.1.0.1 Ethernet: src=xxx, dst=yyy TCP: src=19485, dst=22 IP: src=172.16.2.1, dst=192.168.0.1 Ethernet: src=xxx, dst=yyy TCP: src=19485, dst=22 VLAN: vid=100 再掲

Slide 12

Slide 12 text

NAVT with P4 Switch 192.168.4.1 192.168.4.1 10.1.4.1 10.20.4.1 再掲

Slide 13

Slide 13 text

NAVT with P4 Switch ● NAVT: Network Address VLAN Translation ○ トラコンの問題環境を支える変換プロトコル IP: src=10.7.4.1, dst=160.16.73.123 Ethernet: src=xxx, dst=yyy TCP: src=58193, dst=443 IP: src=192.168.4.1, dst=160.16.73.123 Ethernet: src=xxx, dst=yyy TCP: src=58193, dst=443 VLAN: vid=700 再掲

Slide 14

Slide 14 text

NAVT with P4 Switch ● 今年はP4を用いてNAVTの実装を行った ○ https://github.com/takehaya/p4-navt ● ハードウェアのP4スイッチをお借りした ○ Edgecore Wedge 100BF-32X 再掲

Slide 15

Slide 15 text

機材と協賛様 実際のP4専用ハードとしては BarefootTofinoと呼ばれる専用ASIC が有名であり今回我々も採用した 機材はAPPRESIA SYSTEMS 様から Edgecore Wedge 100BF-32X これを活かすためにコアで利用した 10G NICはさくらインターネット様よりお 借りした。 この場を借りて感謝申し上げる🙇‍♀🙇‍♀ 15 WedgeとMellanox が100Gで接続されている

Slide 16

Slide 16 text

P4Switchアーキテクチャ 処理に関してもハードウェアごとにアーキテクチャがある 以下はBMv2と言われるP4で動くSoftwareSwitchだが 実際のハードウェアでも以下のように 「parser」「ingress」「egress」「deparser」でコンポーネント パケットを解析しつつ処理を行い最後に構築するというパイプラインで処理 される 16 cf. https://p4.org/assets/P4_D2_East_2018_01_basics.pdf 再掲

Slide 17

Slide 17 text

NAVTの実装について NAVT(https://github.com/takehaya/p4-navt )について説明する P4は parser, ingress, egress, deparserというコンポーネントで 作られているので今回はどこでどのような処理をすると実装できるか を説明していく Parser: P4においてパケットをどこまで読むかを示すところ。 例えばL3までのパケットしか処理をしないなどはここで示す 17

Slide 18

Slide 18 text

Parsing Graph 18 IPv4 Ethernet IPv6 dot1q TCP UDP L2 L3 L4

Slide 19

Slide 19 text

Parsingのコード 19

Slide 20

Slide 20 text

NAVTの実装について Ingress: P4においてパケット処理を行う場所。 多くのパイプラインではIngressで処理を行う。 また今回は実装していないがCPU側(つまりコントローラー側) にパケットを一度転送するかはここで判断する またNAVTの処理部分もここで行われる 20

Slide 21

Slide 21 text

ingressのコードのmain関数的部分 21

Slide 22

Slide 22 text

ingressのコードのdot1qがあるかの解析 22 ここでは vlanが存在すれば dot1qを変数に保存しておき tagであるとフラグを立てる もしそうでなければethertypeだけ保存 をしておく

Slide 23

Slide 23 text

ingressのコードのNAVT部分その1 23 二つのテーブルを宣言してる inside: 外側から内側へを司る key: vlanID value: vlan/100の値, dst macaddr outside: 内側から外側へを司る key: /16の経路を表現できるlpm value: vlanID, dst macaddr

Slide 24

Slide 24 text

ingressのコードのNAVT部分その2 24 ←許可されないアドレスなのでdrop ↑皆さんからきたパケットではな いのでdrop ←ちょうどNATしているところ 内部=>外部 ←ちょうどNATしているところ 外部=>内部

Slide 25

Slide 25 text

Egress: P4において後処理を行うことが多い。 例えばDecapしたdot1q hdrをここで付け直したりどこのポートにルーティン グするかを判断する。 今回はここでdot1q encapを行っている NAVTの実装について 25

Slide 26

Slide 26 text

egressのコード 26 ingressで保存した値を利用して ここでdot1qをEncapをする

Slide 27

Slide 27 text

NAVTの実装について Deparser: 処理を行ったパケットのうちどのパケットを外部に構築して出力 するのかを司る。 27

Slide 28

Slide 28 text

deparserのコード 28 emitした順にパケットが出力される これだけ見るとdot1qもなんとなく 必ずつけられそうに見えるが dot1q hdrが不正であるという フラグを立てておくことで 回避できる(e.g. setInvalid )

Slide 29

Slide 29 text

動作に関する情報 • 開発においての一週間のsflowのログを見るとピークで7Gbps ほどがパケットが流れていたが本大会ホットステージから 一度たりともハングや再起動がなく動作した 29

Slide 30

Slide 30 text

動作に関する情報 30 • 開発においての一週間のsflowのログを見るとピークで7Gbps ほど、合計で180GB程度流れていたが 一度たりともハングや再起動がなく動作した🎉

Slide 31

Slide 31 text

測定 • 今回のサーバー的に10GbE x 8本程度なので限界値を出すことは 難しいが、単純なperfだと9Gbpsぐらいは出そう 31

Slide 32

Slide 32 text

NAVT with P4 Switch 再掲 ● 今回のサーバー的に10GbE x 8本程度なので限界値を出すことは 難しいが、単純なperfを同時にしたらこんな感じ ● おそらくだがバックエンドでcephが動いてるノードなので性能が 出ず...正しく測定する機材がなく....(涙)100GbE NICが欲しい

Slide 33

Slide 33 text

まとめと感想 • P4+Tofinoを利用したNAVTを実装した • Tofino実機デバッグがしんどい2021 • tcpdumpが使えない • RX,TXのカウンタが回っているか、Tableにつけておいた カウンタが動いているかなどで見るしかなく Softwareでパケット処理するのは簡単なんだなと思った • シミュレーターと実機では全く挙動が違くてしんどい • OSS版(BMv2)は表現力が高く便利だがTofinoはつらい • bitshiftとかで表現ができなくて涙が出る • https://github.com/takehaya/p4-navt でBMv2バージョン は公開されているので遊んでみてください • https://github.com/takehaya/p4_vagrant_playground を使うと P4とBMv2で遊ぶ環境を手に入れれて便利 33