Slide 1

Slide 1 text

Detecting Learner Errors in the Choice of Content Words Using Compositional Distributional Semantics Ekaterina Kochmar and Ted Briscoe, ACL 2014 ※εϥΠυதͷਤද͸શͯ࿦จ͔ΒҾ༻͞Εͨ΋ͷ খொक COLING 2014 ಡΈձ@ट౎େֶ౦ژ 2014/11/06

Slide 2

Slide 2 text

Detecting Learner Errors in the Choice of Adjective-Noun Combinations Using Compositional Distributional Semantics Ekaterina Kochmar and Ted Briscoe, ACL 2014 ※εϥΠυதͷਤද͸શͯ࿦จ͔ΒҾ༻͞Εͨ΋ͷ খொक COLING 2014 ಡΈձ@ट౎େֶ౦ژ 2014/11/06

Slide 3

Slide 3 text

ӳޠֶशऀ͸ܗ༰ࢺ-໊ࢺ ͷ૊Έ߹ΘͤΛΑؒ͘ҧ͑Δ | ҙຯ͕ࣅ͍ͯΔͷͰؒҧ͑ͯ࢖ͬͯ͠·͏ { *big/large quantity { *big/great importance | Α͋͘Δܗ༰ࢺΛؒҧ͑ͯ࢖ͬͯ͠·͏ { *big/long history { *greatest/highest revenue { *bigger/wider variety { *large/broad knowledge | ҰൠతͰͳ͍ܗ༰ࢺΛ࢖ͬͯ͠·͏ { *classic/classical dance { *economical/economic crisis 3

Slide 4

Slide 4 text

಺༰ޠͷޡΓݕग़͸ػೳޠͱ ൺ΂ͯνϟϨϯδϯάͳλεΫ | ػೳޠʢલஔࢺɾףࢺʣ͸ closed set ͳͷͰɺ confusion set ͱޡΓ෼෍͸ֶशऀςΩετ͔Β ֶशՄೳ (Rozovskaya and Roth, ACL 2011) | ಺༰ޠ͸ open set ͳͷͰ confusion set Λ࡞ Δͷ͕೉͍͠ʢͨΊଟΫϥε෼ྨλεΫʹམͱ ͤͳ͍ʣ →ݴޠֶशऀͷจষʹ͸ʢจ๏ɾҙຯతʹ͸ਖ਼͘͠ ͯ΋ʣ௿ස౓ޠؚ͕·ΕΔͷͰɺڞىͷΈʹجͮ͘ ख๏͸͏·͘ߦ͔ͳ͍ɻcf. appropriate concern vs proper concern 4

Slide 5

Slide 5 text

ຊ࿦จͷओཁͳߩݙ | ֶशऀίʔύε͔Βநग़ͨ͠ܗ༰ࢺ-໊ࢺͷޡΓ Ξϊςʔγϣϯ͖ͭσʔλΛ࡞੒͢Δ | ߏ੒త෼෍ҙຯϞσϧʢcompositional distributional semantic modelsʣ͕ҙຯͷޡΓ ͷݕग़ʹͲͷΑ͏ʹద༻Ͱ͖Δͷ͔Λࣔ͢ | ܗ༰ࢺ-໊ࢺͷ૊Έ߹ΘͤͷޡΓݕग़ͷૉੑͱ͠ ͯ͜ΕΒͷҙຯϞσϧͷग़ྗ͕ͲͷΑ͏ʹ࢖͑ Δ͔Λࣔ͢ 5

Slide 6

Slide 6 text

಺༰ޠͷޡΓ͸3൪໨ʹଟ͍͕ɺ ೉͘͠औΓ૊·Εͯ͜ͳ͔ͬͨ | ಺༰ޠ͸ open set ͳͷͰ confusion set Λ࡞ Δͷ͕೉͍͠ 1. ޡΓՕॴ͸ಉఆࡁΈͰɺީิબ୒͢ΔλεΫ ಉٛޠɾಉԻޠɾ฼ޠʹؔ͢Δݴ͍׵͔͑Βީ ิબ୒ (Dahlmeier and Ng, EMNLP 2011) 2. ޡΓՕॴ΋෼͔Βͳ͍λεΫ ݴޠֶशऀͷจষʹ͸ʢจ๏ɾҙຯతʹ͸ਖ਼͠ ͯ͘΋ʣ௿ස౓ޠؚ͕·ΕΔͷͰɺڞىͷΈʹ جͮ͘ख๏͸͏·͘ߦ͔ͳ͍ɻcf. appropriate concern vs proper concern | →ޙऀͷλεΫͰ͸ɺσʔλεύʔεωεΛղ ফ͢Δඞཁ͕͋Δ 6

Slide 7

Slide 7 text

εύʔεωεͷͨΊɺ෼෍Ծઆ ͔Βߏ੒త෼෍ҙຯϞσϧ΁ | ୯७ͳ෼෍Ծઆʹجͮ͘ख๏ ڞى͢Δจ຺͔ΒͳΔߴ࣍ݩϕΫτϧ →εύʔεͳͷͰ಺༰ޠޡΓݕग़ʹ͸޲͔ͳ͍ | ߏ੒త෼෍ҙຯϞσϧʹجͮ͘ख๏ ߏ੒͞ΕΔ୯ޠͷ෼෍ϕΫτϧΛͳΜΒ͔ͷؔ਺ʹ Αͬͯ߹੒ͯ͠ϕΫτϧΛ࡞Δ { ܗ༰ࢺ-໊ࢺͷҙຯϞσϧʹར༻ (Vecchi et al., DISCO 2011; Kochmar and Briscoe, RANLP 2013) { ౷ޠతᐆດੑͷղফʹར༻ (Lazaridou et al., EMNLP 2013) 7

Slide 8

Slide 8 text

ӳޠֶशऀͷܗ༰ࢺ-໊ࢺ ޡΓͷΞϊςʔγϣϯ | จ຺ඇґଘʢOOC: out-of-contextʣͱจ຺ґ ଘʢIC: in-contextʣͷΞϊςʔγϣϯΛ۠ผɻ classic dance ͸จ຺ʹΑͬͯ͸ OK ͕ͩɺ΄ ͱΜͲͷ৔߹ޡΓͱΈͳͯ͠΋Α͍ɻ { They performed a classic Ceilidh dance. { I have tried a rock’n’roll dance and a *classic/classical dance already. | จ຺Λແࢹ͢Δ͔Ͳ͏͔͸γεςϜ΍ΞϓϦ έʔγϣϯͰܾΊΕ͹Α͍ͷͰɺจ຺৘ใ͸༗ ༻ɻ 8

Slide 9

Slide 9 text

CLC-FCE σʔληοτ ʹର͢ΔΞϊςʔγϣϯ | 61छྨͷؒҧ͑΍͍͢ܗ༰ࢺΛநग़ | 798छྨͷܗ༰ࢺ-໊ࢺޡΓ͕λά෇͚ʢઐ໳Ոʣ { correct/incorrect { Ͳ͕ؒ͜ҧ͍ͬͯΔ͔ʢܗ༰ࢺɾ໊ࢺɾ྆ํʣ { ޡΓͷछྨʢಉٛޠɾܗͷྨࣅɾͦΕҎ֎ʣ { ਖ਼ྫʢగਖ਼͢Δͱͨ͠৔߹ͷ݁Ռʣ 9 ※LB = lower bound; UB = upper bound Ұக཰ κ = 0.65 (OOC) ͔ͳΓ͍͚ͯΔ κ = 0.49 (IC) ·͊·͍͚͊ͯΔ

Slide 10

Slide 10 text

ޡΓݕग़ͷͨΊͷҙຯϞσϧ ҙຯϞσϧ (Mitchell and Lapata, ACL 2008; Baroni and Zamparelli, EMNLP 2010) Mitchell and Lapata (2008) ͷϞσϧ͸ରশͳͷ Ͱɺܗ༰ࢺ-໊ࢺͷΑ͏ͳํ޲ੑ͕͋Δҙຯؔ܎ͷ Ϟσϧʹ͸ෆద→Baroni and Zamperelli (2010) ͷ ܗ༰ࢺಛԽઢܗϚοϓ | Ճ๏త (add: additive) Ϟσϧ pi = ui + vi | ৐๏త (mult: multiplicative) Ϟσϧ pi = ui * vi | ܗ༰ࢺಛԽઢܗϚοϓ (alm: adjective- specific linear maps) p = Bv 10

Slide 11

Slide 11 text

ܗ༰ࢺಛԽઢܗϚοϓ p = Bv ͷڞىߦྻߏங | ໊ࢺ͸෼෍Ծઆʹجͮ͘ϕΫτϧɺܗ༰ࢺ͸໊ ࢺͷϕΫτϧΛมԽͤ͞ΔॏΈߦྻͰɺܗ༰ࢺ- ໊ࢺͷҙຯ߹੒͸ߦྻɾϕΫτϧͷ৐ࢉͰఆٛ 11 1ສจ຺ཁૉʹίʔύεதͷ࠷සग़໊ࢺɾܗ༰ࢺɾಈࢺ ʢίʔύε͸BNCͰRASPʹΑͬͯղੳͯ͠༻͍ͨʣ 8,000 ໊ࢺ 4,000 ܗ༰ࢺ 64,000 ܗ༰ࢺ ໊ࢺϖΞ N A AN ߦྻͷཁૉ͸ local mutual informaiton N A A N SVDͰ࣍ݩѹॖͯ͠300࣍ݩʹ ߦྻͷॏΈ͸ܗ༰ࢺ͝ͱʹ ଟมྔPLSճؼͰֶश

Slide 12

Slide 12 text

ҙຯʹجͮ͘ૉੑʢ1ʣ ઌߦݚڀͷ࠶࣮૷ 1. ϕΫτϧ௕ 2. ೖྗ໊ࢺʹର͢Δ cos ྨࣅ౓ 3. ೖྗܗ༰ࢺʹର͢Δ cos ྨࣅ౓ 4. ग़ྗʹର͢Δ10ۙ๣ʹ͓͚Δۙ๣ͷີ౓ 5. ೖྗʹର͢Δ10ۙ๣ʹ͓͚Δۙ๣ͷີ౓ 6. ۙ๣ͷϥϯΫ͖ͭີ౓ 7. ۙ๣ͷ਺ 8. ೖྗʹର͢Δ10ۙ๣ͷΦʔόʔϥοϓ 12

Slide 13

Slide 13 text

ҙຯʹجͮ͘ૉੑʢ2ʣ ຊݚڀͷ௥Ճૉੑ 9. ೖྗ໊ࢺʹର͢Δ10ۙ๣ͷΦʔόʔϥοϓ 10. ೖྗܗ༰ࢺʹର͢Δ10ۙ๣ͷΦʔόʔϥοϓ 11. ग़ྗʹର͢Δ10ۙ๣ͷΦʔόʔϥοϓ 12. ग़ྗʹର͢Δೖྗ໊ࢺͷ10ۙ๣ͷΦʔόʔϥο ϓ 13. ग़ྗʹର͢Δೖྗܗ༰ࢺͷ10ۙ๣ͷΦʔόʔ ϥοϓ 13

Slide 14

Slide 14 text

ҙຯޡΓݕग़ʹ͸ cos ྨࣅ౓ͱ ୯ޠΦʔόʔϥοϓ͕༗ޮ 14 ઌ ߦ ݚ ڀ ఏ Ҋ ૉ ੑ

Slide 15

Slide 15 text

ڞىख๏͸௿ස౓ޠʹऑ͍͕ɺ ҙຯϞσϧʴػցֶश͸ؤ݈ | ϕʔεϥΠϯ { λʔήοτͷ୯ޠʹର͢Δ WordNet ͷಉٛޠͱ ্Ґޠ͔ΒͳΔ confusion set ͷதͰɺݩͷ୯ޠ ͱൺ΂ͯ BNC ʹ͓͚Δڞىස౓ʢnormalized pmiʣ͕ߴ͍୯ޠ͕͋Ε͹ޡΓͩͱݕग़͢Δɻ | ఏҊख๏ { NLTK ͷܾఆ໦ɻૉੑ͸લܝͷҙຯૉੑʴ୯ޠɻ 15

Slide 16

Slide 16 text

·ͱΊ ܗ༰ࢺ໊ࢺͷӳޠޡΓ ݕग़ʹ͸ɺڭࢣ͋Γֶश͕༗ޮ | ܗ༰ࢺ-໊ࢺͷӳޠֶशऀͷޡΓλά͖ͭσʔλ ΛϦϦʔεͨ͠ɻ | ߏ੒ҙຯ࿦ʹ༝དྷ͢ΔૉੑΛ૊ΈࠐΜͩ2஋෼ྨ ثΛ༻͍ɺܗ༰ࢺ-໊ࢺͷޡΓݕग़λεΫʹऔΓ ૊ΜͩɻϕʔεϥΠϯͱͯ͠ɺڞىස౓ʹجͮ ͘ख๏Λ࣮૷ͯ͠ൺֱͨ͠ɻ | ܾఆ໦Λ༻͍ͨڭࢣ͋Γ෼ྨث͕΋ͬͱ΋Α͍ ݁ՌͰ͋ͬͨɻ 16

Slide 17

Slide 17 text

ࢀߟจݙʢҙຯϞσϧʣ | Mitchell and Lapata. Vector-based models in semantic composition. ACL 2008. | Baroni and Zamparelli. Nouns are vectors, adjectives are matrices: Representing adjective-noun construction in semantic space. EMNLP 2010. | Lazaridou et al. Fish transporters and miracle homes: How compositional distributional semantics can help NP parsing. EMNLP 2013. | Kochmar and Briscoe Capturing Anomalies in the Choice of Content Words in Compositional Distributional Semantic Space. RANLP 2013. 17

Slide 18

Slide 18 text

ࢀߟจݙʢESL ޡΓగਖ਼ʣ | Rozovskaya and Roth. Algorithm Selection and Model Adaptation for ESL Correction Tasks. ACL 2011. | Yannakoudakis et al. A New Dataset and Method for Automatically Grading ESOL Texts. ACL 2011. | Dahlmeier and Ng. Correcting Semantic Collocation Errors with L1-induced Paraphrases. EMNLP 2011. 18