Slide 1

Slide 1 text

Henk Boelman Cloud Advocate @ Microsoft Getting started with Azure Machine Learning studio HenkBoelman.com @hboelman

Slide 2

Slide 2 text

Agenda Machine Learning on Azure Data science process Simpson recognition using Azure Machine Learning studio

Slide 3

Slide 3 text

Machine Learning Ability to learn without being explicitly programmed.

Slide 4

Slide 4 text

Programming Algorithm Data Answers

Slide 5

Slide 5 text

Machine Learning Algorithm Data Answers

Slide 6

Slide 6 text

Machine Learning Model Data Answers

Slide 7

Slide 7 text

Machine Learning Model Data Answers

Slide 8

Slide 8 text

Machine Learning Predictions Data Model Data Answers

Slide 9

Slide 9 text

Sophisticated pretrained models To simplify solution development Azure Databricks Machine Learning VMs Popular frameworks To build advanced deep learning solutions TensorFlow Keras Pytorch Onnx Azure Machine Learning Language Speech … Azure Search Vision On-premises Cloud Edge Productive services To empower data science and development teams Powerful infrastructure To accelerate deep learning Flexible deployment To deploy and manage models on intelligent cloud and edge Machine Learning on Azure Cognitive Services

Slide 10

Slide 10 text

Vision Speech Language Knowledge Cognitive Services: Pre-Trained models in the cloud and on the edge

Slide 11

Slide 11 text

Slide 12

Slide 12 text

Ask a sharp question Collect the data Prepare the data Select the algorithm Train the model Use the answer The data science process

Slide 13

Slide 13 text

Ask a sharp question

Slide 14

Slide 14 text

Ask a sharp question How much / how many? Is it this or that? Is it weird? Which group? Which action?

Slide 15

Slide 15 text

What is the price of a second hand car?

Slide 16

Slide 16 text

Collect the data

Slide 17

Slide 17 text

Collect the data

Slide 18

Slide 18 text

Collect the data

Slide 19

Slide 19 text

Prepare the data

Slide 20

Slide 20 text

Prepare the data Every column in your dataset has to be: Relevant Independent Simple Clean

Slide 21

Slide 21 text

Prepare the data: Relevant

Slide 22

Slide 22 text

Prepare the data: Independent

Slide 23

Slide 23 text

Prepare the data: Simple

Slide 24

Slide 24 text

Prepare the data: Clean

Slide 25

Slide 25 text

Prepare the data: Clean

Slide 26

Slide 26 text

Select the algorithm

Slide 27

Slide 27 text

Select the algorithm

Slide 28

Slide 28 text

Train the Model

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

Use the answer

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

Azure Machine Learning studio A fully-managed cloud service that enables you to easily build, deploy, and share predictive analytics solutions.

Slide 34

Slide 34 text

Is it Marge or Homer?

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

Sophisticated pretrained models To simplify solution development Azure Databricks Machine Learning VMs Popular frameworks To build advanced deep learning solutions TensorFlow Keras Pytorch Onnx Azure Machine Learning Language Speech … Azure Search Vision On-premises Cloud Edge Productive services To empower data science and development teams Powerful infrastructure To accelerate deep learning Flexible deployment To deploy and manage models on intelligent cloud and edge Machine Learning on Azure Cognitive Services

Slide 37

Slide 37 text

Prepare your environment Experiment with your model & data Deploy Your model into production

Slide 38

Slide 38 text

Step 1: Prepare your environment

Slide 39

Slide 39 text

Setup your environment VS Code Azure Notebooks Azure Portal

Slide 40

Slide 40 text

Azure Notebook / Jupyter Notebook

Slide 41

Slide 41 text

Create a workspace ws = Workspace.create( name='', subscription_id='', resource_group='', location='westeurope') ws.write_config() ws = Workspace.from_config() Create a workspace

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

Datasets – registered, known data sets Experiments – Training runs Models – Registered, versioned models Endpoints: Real-time Endpoints – Deployed model endpoints Pipeline Endpoints – Training workflows Compute – Managed compute Datastores – Connections to data Azure Machine Learning Service

Slide 44

Slide 44 text

Create Compute cfg = AmlCompute.provisioning_configuration( vm_size='STANDARD_NC6', min_nodes=1, max_nodes=6) cc = ComputeTarget.create(ws, '', cfg) Create a workspace Create compute

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

Demo: Setup your workspace Create a workspace Create compute Setup storage

Slide 47

Slide 47 text

Step 1 Prepare your environment Create a workspace Create compute Setup storage

Slide 48

Slide 48 text

Step 2: Experiment with your model & data

Slide 49

Slide 49 text

Create an experiment exp = Experiment(workspace=ws, name=“”) Create an Experiment

Slide 50

Slide 50 text

Create a training file Create an Experiment Create a training file

Slide 51

Slide 51 text

Create an estimator params = {'--data-folder': ws.get_default_datastore().as_mount()} estimator = TensorFlow( source_directory = script_folder, script_params = params, compute_target = computeCluster, entry_script = 'train.py’, use_gpu = True, conda_packages = ['scikit-learn','keras','opencv’], framework_version='1.10') Create an Experiment Create a training file Create an estimator

Slide 52

Slide 52 text

Submit the experiment to the cluster run = exp.submit(estimator) RunDetails(run).show() Create an Experiment Create a training file Submit to the AI cluster Create an estimator

Slide 53

Slide 53 text

Create an Experiment Create a training file Submit to the AI cluster Create an estimator Demo: Creating and run an experiment

Slide 54

Slide 54 text

Azure Notebook Compute Target Experiment Docker Image Data store 1. Snapshot folder and send to experiment 2. create docker image 3. Deploy docker and snapshot to compute 4. Mount datastore to compute 6. Stream stdout, logs, metrics 5. Launch the script 7. Copy over outputs

Slide 55

Slide 55 text

Register the model model = run.register_model( model_name='SimpsonsAI', model_path='outputs') Create an Experiment Create a training file Submit to the AI cluster Create an estimator Register the model

Slide 56

Slide 56 text

Create an Experiment Create a training file Submit to the AI cluster Create an estimator Register the model Demo: Register and test the model

Slide 57

Slide 57 text

Step 2 Experiment with your model & data

Slide 58

Slide 58 text

Step 3: Deploy your model into production

Slide 59

Slide 59 text

AMLS to deploy The Model Score.py Environment file Docker Image

Slide 60

Slide 60 text

Score.py %%writefile score.py from azureml.core.model import Model def init(): model_root = Model.get_model_path('MyModel’) loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights(model_file_h5) def run(raw_data): url = json.loads(raw_data)['url’] image_data = cv2.resize(image_data,(96,96)) predicted_labels = loaded_model.predict(data1) return json.dumps(predicted_labels)

Slide 61

Slide 61 text

Environment File from azureml.core.runconfig import CondaDependencies cd = CondaDependencies.create() cd.add_conda_package('keras==2.2.2') cd.add_conda_package('opencv') cd.add_tensorflow_conda_package() cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')

Slide 62

Slide 62 text

Inference config inference_config = InferenceConfig( runtime= "python", entry_script="score.py", conda_file="myenv.yml" )

Slide 63

Slide 63 text

Deployment using AMLS

Slide 64

Slide 64 text

Deploy to ACI aciconfig = AciWebservice.deploy_configuration( cpu_cores = 1, memory_gb = 2) service = Model.deploy(workspace=ws, name='simpsons-aci', models=[model], inference_config=inference_config, deployment_config=aciconfig)

Slide 65

Slide 65 text

Deploy to AKS aks_target = AksCompute(ws,"AI-AKS-DEMO") deployment_config = AksWebservice.deploy_configuration( cpu_cores = 1, memory_gb = 1) service = Model.deploy(workspace=ws, name="simpsons-ailive", models=[model], inference_config=inference_config, deployment_config=deployment_config, deployment_target=aks_target) service.wait_for_deployment(show_output = True)

Slide 66

Slide 66 text

Demo: Deploy to ACI

Slide 67

Slide 67 text

Prepare Data Register and Manage Model Train & Test Model Build Image … Build model (your favorite IDE) Deploy Service Monitor Model Prepare Experiment Deploy

Slide 68

Slide 68 text

@hboelman github.com/hnky henkboelman.com Thank you! Read more on: henkboelman.com