Slide 1

Slide 1 text

Statistical Rethinking 8. Markov chain Monte Carlo 2023

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

15 20 25 30 6 8 10 12 Marriage rate Divorce rate AL AK AR CO CT DE DC GA HI ID KY ME MN NJ ND OK RI TN UT VA WY Age at marriage M D A ? Marriage Divorce 23 24 25 26 27 28 29 6 8 10 12 Median age of marriage Divorce rate AL AR CT DC ID ME MA MN NJ ND OK RI UT WY 23 24 25 26 27 28 29 15 20 25 30 Median age of marriage Marriage rate AK AR DE DC HI ID ME MA MN NJ NY ND OK PA RI UT WY

Slide 4

Slide 4 text

M D A M* D* A* Marriage observed Age at marriage observed Divorce observed

Slide 5

Slide 5 text

M D A M* D* A* Marriage observed Age at marriage observed Divorce observed P Population

Slide 6

Slide 6 text

K Knowledge Real, latent modeling problems

Slide 7

Slide 7 text

K S Score Knowledge Real, latent modeling problems

Slide 8

Slide 8 text

K S Score Q Knowledge Test/Instrument Real, latent modeling problems

Slide 9

Slide 9 text

K S Score Q Knowledge Test/Instrument X Person feature Real, latent modeling problems

Slide 10

Slide 10 text

Q Y Evaluation R Quality Referee X Feature Real, latent modeling problems

Slide 11

Slide 11 text

Social networks YAB RAB Relationship A→B Behavior A→B

Slide 12

Slide 12 text

Social networks YAB RAB RBA Relationship B→A Relationship A→B Behavior A→B

Slide 13

Slide 13 text

Social networks YAB XA XB RAB RBA Relationship B→A Relationship A→B Features of B Features of A

Slide 14

Slide 14 text

Social networks YAB XA XB RAB RBA Relationship B→A Relationship A→B Features of B Features of A

Slide 15

Slide 15 text

Problems & solutions Real research problems: Many unknowns Nested relationships Bounded outcomes Di cult calculations K S Q X YAB XA XB RAB RBA

Slide 16

Slide 16 text

aNAlYzE tHe DatA

Slide 17

Slide 17 text

Computing the posterior 1. Analytical approach (o en impossible) 2. Grid approximation (very intensive) 3. Quadratic approximation (limited) 4. Markov chain Monte Carlo (intensive)

Slide 18

Slide 18 text

King Markov

Slide 19

Slide 19 text

e Metropolis Archipelago

Slide 20

Slide 20 text

Contract: King Markov must visit each island in proportion to its population size Here’s how he does it...

Slide 21

Slide 21 text

(1) Flip a coin to choose island on le or right. Call it the “proposal” island. 1 2 1 2

Slide 22

Slide 22 text

1 2 3 4 5 6 7 p5 proposal (1) Flip a coin to choose island on le or right. Call it the “proposal” island. (2) Find population of proposal island.

Slide 23

Slide 23 text

p5 (1) Flip a coin to choose island on le or right. Call it the “proposal” island. p4 1 2 3 4 5 6 7 proposal (3) Find population of current island. (2) Find population of proposal island.

Slide 24

Slide 24 text

(2) Find population of proposal island. (1) Flip a coin to choose island on le or right. Call it the “proposal” island. p5 p4 1 2 3 4 5 6 7 proposal (3) Find population of current island. (4) Move to proposal, with probability = p5 p4

Slide 25

Slide 25 text

(2) Find population of proposal island. (1) Flip a coin to choose island on le or right. Call it the “proposal” island. (3) Find population of current island. 1 2 3 4 5 6 7 (4) Move to proposal, with probability = p5 p4 (5) Repeat from (1)

Slide 26

Slide 26 text

(2) Find population of proposal island. (1) Flip a coin to choose island on le or right. Call it the “proposal” island. (3) Find population of current island. (4) Move to proposal, with probability = p5 p4 1 2 3 4 5 6 7 (5) Repeat from (1) is procedure ensures visiting each island in proportion to its population, in the long run.

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

Markov chain Monte Carlo Usual use: Draw samples from a posterior distribution “Islands”: parameter values “Population size”: posterior probability Visit each parameter value in proportion to its posterior probability Any number of dimensions (parameters)

Slide 30

Slide 30 text

“Markov chain Monte Carlo” Chain: Sequence of draws from distribution Markov chain: History doesn’t matter, just where you are now Monte Carlo: Random simulation

Slide 31

Slide 31 text

“Markov chain Monte Carlo” Metropolis algorithm: Simple version of Markov chain Monte Carlo (MCMC) Easy to write, very general, o en ine cient

Slide 32

Slide 32 text

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) OURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE Equation of State Calculations by Fast Computing Machines NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER, Los Alamos Scientific Laboratory, Los Alamos, New Mexico AND EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois (Received March 6, 1953) A general method, suitable for fast computing machines, for investigatiflg such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

Slide 33

Slide 33 text

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) OURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE Equation of State Calculations by Fast Computing Machines NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER, Los Alamos Scientific Laboratory, Los Alamos, New Mexico AND EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois (Received March 6, 1953) A general method, suitable for fast computing machines, for investigatiflg such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

Slide 34

Slide 34 text

Arianna Rosenbluth (1927–2020)

Slide 35

Slide 35 text

Arianna Rosenbluth (1927–2020)

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

Mathematical Analyzer, Numerical Integrator, and Computer MANIAC: 1000 pounds 5 kilobytes of memory 70k multiplications/sec Your laptop: 4–7 pounds 8+ million kilobytes memory Billions of multiplications/sec

Slide 38

Slide 38 text

MCMC is diverse Metropolis has yielded to newer, more e cient algorithms Many innovations in the last decades Best methods use gradients We’ll use Hamiltonian Monte Carlo

Slide 39

Slide 39 text

Basic Rosenbluth (aka Metropolis) algorithm

Slide 40

Slide 40 text

Basic Rosenbluth (aka Metropolis) algorithm large step size small step size

Slide 41

Slide 41 text

-3 -2 -1 0 1 2 3 0.0 0.1 0.2 0.3 0.4 value probability

Slide 42

Slide 42 text

-3 -2 -1 0 1 2 3 0.0 0.1 0.2 0.3 0.4 value probability -3 -2 -1 0 1 2 3 1 2 3 4 5 value -log probability

Slide 43

Slide 43 text

x y z x y z

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

Low probability High probability

Slide 46

Slide 46 text

Hamiltonian Monte Carlo

Slide 47

Slide 47 text

Hamiltonian Monte Carlo

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

0WFSUIJOLJOH )BNJMUPOJBO .POUF $BSMP JO UIF SBX ćF ).$ BMHPSJUIN OFFET ĕWF UIJOHT UP HP B GVODUJPO U UIBU SFUVSOT UIF OFHBUJWF MPHQSPCBCJMJUZ PG UIF EBUB BU UIF DVSSFOU QPTJUJPO QBSBNFUFS WBMVFT B GVODUJPO grad_U UIBU SFUVSOT UIF HSBEJFOU PG UIF OFHBUJWF MPHQSPCBCJMJUZ BU UIF DVSSFOU QPTJUJPO B TUFQ TJ[F epsilon B DPVOU PG MFBQGSPH TUFQT L BOE B TUBSUJOH QPTJUJPO current_q ,FFQ JO NJOE UIBU UIF QPTJUJPO JT B WFDUPS PG QBSBNFUFS WBMVFT BOE UIBU UIF HSBEJFOU BMTP OFFET UP SFUVSO B WFDUPS PG UIF TBNF MFOHUI 4P UIBU UIFTF U BOE grad_U GVODUJPOT NBLF NPSF TFOTF MFUT QSFTFOU UIFN ĕSTU CVJMU DVTUPN GPS UIF % (BVTTJBO FYBNQMF ćF U GVODUJPO KVTU FYQSFTTFT UIF MPH QPTUFSJPS BT TUBUFE CFGPSF JO UIF NBJO UFYU J MPH Q(ZJ|µZ, ) + J MPH Q(YJ|µY, ) + MPH Q(µZ|, .) + MPH Q(µY, , .) 4P JUT KVTU GPVS DBMMT UP dnorm SFBMMZ 3 DPEF # U needs to return neg-log-probability U <- function( q , a=0 , b=1 , k=0 , d=1 ) { muy <- q[1] mux <- q[2] U <- sum( dnorm(y,muy,1,log=TRUE) ) + sum( dnorm(x,mux,1,log=TRUE) ) + dnorm(muy,a,b,log=TRUE) + dnorm(mux,k,d,log=TRUE) return( -U ) } /PX UIF HSBEJFOU GVODUJPO SFRVJSFT UXP QBSUJBM EFSJWBUJWFT -VDLJMZ (BVTTJBO EFSJWBUJWFT BSF WFSZ DMFBO ćF EFSJWBUJWF PG UIF MPHBSJUIN PG BOZ VOJWBSJBUF (BVTTJBO XJUI NFBO B BOE TUBOEBSE EFWJBUJPO C XJUI SFTQFDU UP B JT ∂ MPH /(Z|B, C) ∂B = Z − B C "OE TJODF UIF EFSJWBUJWF PG B TVN JT B TVN PG EFSJWBUJWFT UIJT JT BMM XF OFFE UP XSJUF UIF HSBEJFOUT ∂6 ∂µY = ∂ MPH /(Y|µY, ) ∂µY + ∂ MPH /(µY|, .) ∂µY = J YJ − µY + − µY . Pages 276–278

Slide 50

Slide 50 text

Calculus is a superpower Hamiltonian Monte Carlo needs gradients How does it get them? Write them yourself or… Auto-di : Automatic di erentiation Symbolic derivatives of your model code Used in many machine learning approaches; “Backpropagation” is special case

Slide 51

Slide 51 text

Stanisław Ulam (1909–1984) mc-stan.org

Slide 52

Slide 52 text

Stanisław Ulam and his daughter Claire with MANIAC

Slide 53

Slide 53 text

PAUSE

Slide 54

Slide 54 text

Example: e Judgment at Princeton

Slide 55

Slide 55 text

library(rethinking) data(Wines2012) Example: e Judgment at Princeton

Slide 56

Slide 56 text

library(rethinking) data(Wines2012) Example: e Judgment at Princeton 20 wines (10 French, 10 NJ) 9 French & American judges 180 scores

Slide 57

Slide 57 text

Q S Score J Wine quality Judge

Slide 58

Slide 58 text

Q S Score J Wine quality Judge X Wine origin

Slide 59

Slide 59 text

Q S Score J Wine quality Judge X Wine origin Z Judge origin

Slide 60

Slide 60 text

Q S Score J Wine quality Judge X Wine origin Z Judge origin

Slide 61

Slide 61 text

Q S Score J Wine quality Judge X Wine origin Z Judge origin

Slide 62

Slide 62 text

Q S Score J Wine quality Judge X Wine origin Z Judge origin Estimand: Association between wine quality and wine origin. Stratify by judge for e ciency.

Slide 63

Slide 63 text

library(rethinking) data(Wines2012) d <- Wines2012 dat <- list( S=standardize(d$score), J=as.numeric(d$judge), W=as.numeric(d$wine), X=ifelse(d$wine.amer==1,1,2), Z=ifelse(d$judge.amer==1,1,2) ) mQ <- ulam( alist( S ~ dnorm(mu,sigma), mu <- Q[W], Q[W] ~ dnorm(0,1), sigma ~ dexp(1) ) , data=dat , chains=4 , cores=4 ) precis(mQ,2) Q S J X Z Si ⇠ Normal(µi, ) µi = QW [i] Qj ⇠ Normal(0, 1) ⇠ Exponential(1) AAACZnicbVHLS+NAHJ5kfdZXtSwevAwWRUFKooJ7WSiK4EksWis0IUym03Z0HmHml8US8k/ubc9e/DN2Gnvw9YOBL99jMvNNmgluIQj+ef6PufmFxaXl2srq2vpGfXPr3urcUNalWmjzkBLLBFesCxwEe8gMIzIVrJc+XUz13h9mLNfqDiYZiyUZKT7klICjknp5m3C8H1kucQTsGYprbSQR5UEk84QfOWEkyWEU1apvvP8bd5Ki1+dx6bhO8vhtNjgKq0gV/uC4fM60Ygr41BYeJvVm0AqqwV9BOANNNJubpP43GmiaS7cFFcTafhhkEBfEAKeClbUotywj9ImMWN9BRSSzcVHVVOI9xwzwUBu3FOCKfZ8oiLR2IlPnlATG9rM2Jb/T+jkMf8UFV1kOTNG3Hw1zgUHjaed4wA2jICYOEGq4OyumY2IIBfcyNVdC+PnKX8H9cSs8aR13Tpvt81kdS2gH7aIDFKIz1EZX6AZ1EUUv3rK35TW8V3/d/+lvv1l9b5ZpoA/j4//dXrZe

Slide 64

Slide 64 text

library(rethinking) data(Wines2012) d <- Wines2012 dat <- list( S=standardize(d$score), J=as.numeric(d$judge), W=as.numeric(d$wine), X=ifelse(d$wine.amer==1,1,2), Z=ifelse(d$judge.amer==1,1,2) ) mQ <- ulam( alist( S ~ dnorm(mu,sigma), mu <- Q[W], Q[W] ~ dnorm(0,1), sigma ~ dexp(1) ) , data=dat , chains=4 , cores=4 ) precis(mQ,2) Q S J X Z Si ⇠ Normal(µi, ) µi = QW [i] Qj ⇠ Normal(0, 1) ⇠ Exponential(1) AAACZnicbVHLS+NAHJ5kfdZXtSwevAwWRUFKooJ7WSiK4EksWis0IUym03Z0HmHml8US8k/ubc9e/DN2Gnvw9YOBL99jMvNNmgluIQj+ef6PufmFxaXl2srq2vpGfXPr3urcUNalWmjzkBLLBFesCxwEe8gMIzIVrJc+XUz13h9mLNfqDiYZiyUZKT7klICjknp5m3C8H1kucQTsGYprbSQR5UEk84QfOWEkyWEU1apvvP8bd5Ki1+dx6bhO8vhtNjgKq0gV/uC4fM60Ygr41BYeJvVm0AqqwV9BOANNNJubpP43GmiaS7cFFcTafhhkEBfEAKeClbUotywj9ImMWN9BRSSzcVHVVOI9xwzwUBu3FOCKfZ8oiLR2IlPnlATG9rM2Jb/T+jkMf8UFV1kOTNG3Hw1zgUHjaed4wA2jICYOEGq4OyumY2IIBfcyNVdC+PnKX8H9cSs8aR13Tpvt81kdS2gH7aIDFKIz1EZX6AZ1EUUv3rK35TW8V3/d/+lvv1l9b5ZpoA/j4//dXrZe mean sd 5.5% 94.5% n_eff Rhat4 Q[1] 0.14 0.30 -0.34 0.64 2962 1 Q[2] 0.11 0.32 -0.40 0.61 3033 1 Q[3] 0.27 0.31 -0.21 0.75 2608 1 Q[4] 0.55 0.33 0.04 1.09 2598 1 Q[5] -0.13 0.32 -0.63 0.37 2726 1 Q[6] -0.37 0.32 -0.88 0.12 2710 1 Q[7] 0.29 0.32 -0.22 0.81 2679 1 Q[8] 0.27 0.32 -0.24 0.79 3248 1 Q[9] 0.08 0.30 -0.40 0.56 3410 1 Q[10] 0.12 0.32 -0.40 0.63 2697 1 Q[11] -0.02 0.31 -0.52 0.50 2740 1 Q[12] -0.03 0.32 -0.53 0.48 2809 1 Q[13] -0.11 0.32 -0.62 0.39 3225 1 Q[14] 0.01 0.33 -0.51 0.52 2690 1 Q[15] -0.22 0.31 -0.71 0.28 2754 1 Q[16] -0.21 0.32 -0.72 0.30 2120 1 Q[17] -0.14 0.31 -0.64 0.37 3831 1 Q[18] -0.86 0.32 -1.37 -0.35 3093 1 Q[19] -0.16 0.30 -0.65 0.31 2783 1 Q[20] 0.38 0.32 -0.12 0.88 2873 1 sigma 1.00 0.06 0.91 1.09 2759 1

Slide 65

Slide 65 text

Drawing the Markov Owl Complex machinery, but lots of diagnostics (1) Trace plots (2) Trace rank plots (3) R-hat convergence measure (4) Number of e ective samples (5) Divergent transitions

Slide 66

Slide 66 text

0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2962 Q[1] 0 200 400 600 800 1000 -1.5 0.0 1.0 n_eff = 3033 Q[2] 0 200 400 600 800 1000 -2 -1 0 1 n_eff = 2608 Q[3] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2598 Q[4] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2726 Q[5] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2710 Q[6] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2679 Q[7] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3248 Q[8] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3410 Q[9] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2697 Q[10] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2740 Q[11] 0 200 400 600 800 1000 -1.0 0.0 1.0 2.0 n_eff = 2809 Q[12] 0 200 400 600 800 1000 -1.5 -0.5 0.5 1.5 n_eff = 3225 Q[13] 0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2690 Q[14] 0 200 400 600 800 1000 -1.5 -0.5 0.5 1.5 n_eff = 2754 Q[15] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2120 Q[16] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3831 Q[17] 0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 3093 Q[18] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2783 Q[19] 0 200 400 600 800 1000 -1.0 0.0 1.0 2.0 n_eff = 2873 Q[20] Trace plots

Slide 67

Slide 67 text

0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2962 Q[1] 0 200 400 600 800 1000 -1.5 0.0 1.0 n_eff = 3033 Q[2] 0 200 4 -2 -1 0 1 Q[3] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2726 Q[5] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2710 Q[6] 0 200 4 -1.0 0.0 1.0 Q[7] 1.0 n_eff = 3410 Q[9] 1.0 n_eff = 2697 Q[10] 1.0 Q[11]

Slide 68

Slide 68 text

800 1000 0 200 400 600 800 1000 -1.5 0 20 -2 - 800 1000 eff = 2726 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2710 Q[6] 0 20 -1.0 0.0 1.0 Q[7] eff = 3410 n_eff = 2697 Q[10] 1.0 Q[11] Warmup Samples

Slide 69

Slide 69 text

Need more than 1 chain to check convergence Convergence: Each chain explores the right distribution and every chain explores the same distribution library(rethinking) data(Wines2012) d <- Wines2012 dat <- list( S=standardize(d$score), J=as.numeric(d$judge), W=as.numeric(d$wine), X=ifelse(d$wine.amer==1,1,2), Z=ifelse(d$judge.amer==1,1,2) ) mQ <- ulam( alist( S ~ dnorm(mu,sigma), mu <- Q[W], Q[W] ~ dnorm(0,1), sigma ~ dexp(1) ) , data=dat , chains=4 , cores=4 ) precis(mQ,2)

Slide 70

Slide 70 text

0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2962 Q[1] 0 200 400 600 800 1000 -1.5 0.0 1.0 n_eff = 3033 Q[2] 0 200 400 600 800 1000 -2 -1 0 1 n_eff = 2608 Q[3] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2598 Q[4] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2726 Q[5] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2710 Q[6] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2679 Q[7] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3248 Q[8] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3410 Q[9] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2697 Q[10] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2740 Q[11] 0 200 400 600 800 1000 -1.0 0.0 1.0 2.0 n_eff = 2809 Q[12] 0 200 400 600 800 1000 -1.5 -0.5 0.5 1.5 n_eff = 3225 Q[13] 0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2690 Q[14] 0 200 400 600 800 1000 -1.5 -0.5 0.5 1.5 n_eff = 2754 Q[15] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2120 Q[16] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3831 Q[17] 0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 3093 Q[18] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2783 Q[19] 0 200 400 600 800 1000 -1.0 0.0 1.0 2.0 n_eff = 2873 Q[20]

Slide 71

Slide 71 text

0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2962 Q[1] 0 200 400 600 800 1000 -1.5 0.0 1.0 n_eff = 3033 Q[2] 0 200 400 600 800 1000 -2 -1 0 1 n_eff = 2608 Q[3] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2598 Q[4] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2726 Q[5] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2710 Q[6] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2679 Q[7] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3248 Q[8] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3410 Q[9] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2697 Q[10] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2740 Q[11] 0 200 400 600 800 1000 -1.0 0.0 1.0 2.0 n_eff = 2809 Q[12] 0 200 400 600 800 1000 -1.5 -0.5 0.5 1.5 n_eff = 3225 Q[13] 0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2690 Q[14] 0 200 400 600 800 1000 -1.5 -0.5 0.5 1.5 n_eff = 2754 Q[15] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2120 Q[16] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3831 Q[17] 0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 3093 Q[18] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2783 Q[19] 0 200 400 600 800 1000 -1.0 0.0 1.0 2.0 n_eff = 2873 Q[20]

Slide 72

Slide 72 text

0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2962 Q[1] 0 200 400 600 800 1000 -1.5 0.0 1.0 n_eff = 3033 Q[2] 0 200 400 600 800 1000 -2 -1 0 1 n_eff = 2608 Q[3] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2598 Q[4] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2726 Q[5] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2710 Q[6] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2679 Q[7] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3248 Q[8] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3410 Q[9] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2697 Q[10] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 2740 Q[11] 0 200 400 600 800 1000 -1.0 0.0 1.0 2.0 n_eff = 2809 Q[12] 0 200 400 600 800 1000 -1.5 -0.5 0.5 1.5 n_eff = 3225 Q[13] 0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 2690 Q[14] 0 200 400 600 800 1000 -1.5 -0.5 0.5 1.5 n_eff = 2754 Q[15] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2120 Q[16] 0 200 400 600 800 1000 -1.0 0.0 1.0 n_eff = 3831 Q[17] 0 200 400 600 800 1000 -2.0 -0.5 1.0 n_eff = 3093 Q[18] 0 200 400 600 800 1000 -1.5 -0.5 0.5 n_eff = 2783 Q[19] 0 200 400 600 800 1000 -1.0 0.0 1.0 2.0 n_eff = 2873 Q[20]

Slide 73

Slide 73 text

0 200 400 600 800 1000 -10 0 5 10 n_eff = 3946 Q[1] 0 200 400 600 800 1000 -10 0 5 10 n_eff = 3842 Q[2] 0 200 400 600 800 1000 -200 0 200 n_eff = 114 Q[3] 0 200 400 600 800 1000 -300 0 200 n_eff = 178 Q[4] 0 200 400 600 800 1000 -300 0 200 n_eff = 141 Q[5] 0 200 400 600 800 1000 -300 0 200 n_eff = 145 Q[6] 0 200 400 600 800 1000 -200 0 200 n_eff = 114 Q[7] 0 200 400 600 800 1000 -300 0 200 n_eff = 200 Q[8] 0 200 400 600 800 1000 -200 0 200 n_eff = 133 Q[9] 0 200 400 600 800 1000 -300 0 200 n_eff = 135 Q[10] 0 200 400 600 800 1000 -200 200 n_eff = 146 Q[11] 0 200 400 600 800 1000 -300 0 200 n_eff = 230 Q[12] 0 200 400 600 800 1000 -400 -100 200 n_eff = 112 Q[13] 0 200 400 600 800 1000 -400 0 200 n_eff = 179 Q[14] 0 200 400 600 800 1000 -400 0 200 n_eff = 205 Q[15] 0 200 400 600 800 1000 -400 -100 200 n_eff = 186 Q[16] 0 200 400 600 800 1000 -300 0 200 n_eff = 108 Q[17] 0 200 400 600 800 1000 -300 0 200 n_eff = 119 Q[18] 0 200 400 600 800 1000 -300 0 200 n_eff = 196 Q[19] 0 200 400 600 800 1000 -300 0 200 n_eff = 92 Q[20]

Slide 74

Slide 74 text

600 800 1000 0 200 400 600 800 1000 -300 0 0 200 400 6 -200 0 2 600 800 1000 n_eff = 133 0 200 400 600 800 1000 -300 0 200 n_eff = 135 Q[10] 0 200 400 6 -200 200 Q[11] n_eff = 112 0 200 n_eff = 179 Q[14] 0 200 Q[15]

Slide 75

Slide 75 text

Trace rank (Trank) plots n_eff = 2962 Q[1] n_eff = 3033 Q[2] Q n_eff = 2726 Q[5] n_eff = 2710 Q[6] Q Rank orders of samples. No chain should tend to be below/ above others.

Slide 76

Slide 76 text

n_eff = 2962 Q[1] n_eff = 3033 Q[2] n_eff = 2608 Q[3] n_eff = 2598 Q[4] n_eff = 2726 Q[5] n_eff = 2710 Q[6] n_eff = 2679 Q[7] n_eff = 3248 Q[8] n_eff = 3410 Q[9] n_eff = 2697 Q[10] n_eff = 2740 Q[11] n_eff = 2809 Q[12] n_eff = 3225 Q[13] n_eff = 2690 Q[14] n_eff = 2754 Q[15] n_eff = 2120 Q[16] n_eff = 3831 Q[17] n_eff = 3093 Q[18] n_eff = 2783 Q[19] n_eff = 2873 Q[20]

Slide 77

Slide 77 text

n_eff = 3946 Q[1] n_eff = 3842 Q[2] n_eff = 114 Q[3] n_eff = 178 Q[4] n_eff = 141 Q[5] n_eff = 145 Q[6] n_eff = 114 Q[7] n_eff = 200 Q[8] n_eff = 133 Q[9] n_eff = 135 Q[10] n_eff = 146 Q[11] n_eff = 230 Q[12] n_eff = 112 Q[13] n_eff = 179 Q[14] n_eff = 205 Q[15] n_eff = 186 Q[16] n_eff = 108 Q[17] n_eff = 119 Q[18] n_eff = 196 Q[19] n_eff = 92 Q[20]

Slide 78

Slide 78 text

n_eff = 145 Q[6] n_eff = 114 Q[7] n_eff = 135 Q[10] n_eff = 146 Q[11]

Slide 79

Slide 79 text

R-hat When chains converge: (1) Start and end of each chain explores same region (2) Independent chains explore same region R-hat is a ratio of variances: As total variance shrinks to average variance within chains, R-hat approaches 1 NO GUARANTEES; NOT A TEST 0 200 400 600 800 1000 0.00 0.10 0.20 sample variance between within mean sd 5.5% 94.5% n_eff Rhat4 Q[1] 0.14 0.30 -0.34 0.64 2962 1 Q[2] 0.11 0.32 -0.40 0.61 3033 1 Q[3] 0.27 0.31 -0.21 0.75 2608 1

Slide 80

Slide 80 text

n_e Estimate of number of e ective samples “How long would the chain be, if each sample was independent of the one before it?” When samples are autocorrelated, you have fewer e ective samples 0 5 10 15 20 25 30 0.0 0.4 0.8 Lag ACF Series post[, 1, 1] mean sd 5.5% 94.5% n_eff Rhat4 Q[1] 0.14 0.30 -0.34 0.64 2962 1 Q[2] 0.11 0.32 -0.40 0.61 3033 1 Q[3] 0.27 0.31 -0.21 0.75 2608 1

Slide 81

Slide 81 text

mQO <- ulam( alist( S ~ dnorm(mu,sigma), mu <- Q[W] + O[X], Q[W] ~ dnorm(0,1), O[X] ~ dnorm(0,1), sigma ~ dexp(1) ) , data=dat , chains=4 , cores=4 ) plot(precis(mQO,2)) Q S J X Z Si ⇠ Normal(µi, ) µi = QW [i] + OX[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) ⇠ Exponential(1) AAACkHicfVHbSiNBEO0ZL+vGW1Yf96UxKIoSZlTQhxVdRZB9WA0aE8gMQ0+nE3vty9BdI4Yh37P/45t/Y0+SB29Y0HD6nFNV3VVpJriFIHj2/Knpmdlvc98r8wuLS8vVHyu3VueGsibVQpt2SiwTXLEmcBCsnRlGZCpYK70/K/XWAzOWa3UDg4zFkvQV73FKwFFJ9f91wvFGZLnEEbBHKP5qI4kYbkYyT/iOE/qSbEVRZXTHG0e4kRStDo+HeBtfJkW7hE5uJP8+LRPshGX25dfyuM0bx/ljphVTwEtbuJVUa0E9GAX+CMIJqKFJXCXVp6iraS5dCSqItZ0wyCAuiAFOBRtWotyyjNB70mcdBxWRzMbFaKBDvO6YLu5p444CPGJfZxREWjuQqXNKAnf2vVaSn2mdHHqHccFVlgNTdNyolwsMGpfbwV1uGAUxcIBQw91bMb0jhlBwO6y4IYTvv/wR3O7Ww736bmO/dnI6Gccc+onW0CYK0QE6QRfoCjUR9Ra9Pe+Xd+Sv+If+sf97bPW9Sc4qehP+nxfJIcPT

Slide 82

Slide 82 text

Q S J X Z Si ⇠ Normal(µi, ) µi = QW [i] + OX[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) ⇠ Exponential(1) AAACkHicfVHbSiNBEO0ZL+vGW1Yf96UxKIoSZlTQhxVdRZB9WA0aE8gMQ0+nE3vty9BdI4Yh37P/45t/Y0+SB29Y0HD6nFNV3VVpJriFIHj2/Knpmdlvc98r8wuLS8vVHyu3VueGsibVQpt2SiwTXLEmcBCsnRlGZCpYK70/K/XWAzOWa3UDg4zFkvQV73FKwFFJ9f91wvFGZLnEEbBHKP5qI4kYbkYyT/iOE/qSbEVRZXTHG0e4kRStDo+HeBtfJkW7hE5uJP8+LRPshGX25dfyuM0bx/ljphVTwEtbuJVUa0E9GAX+CMIJqKFJXCXVp6iraS5dCSqItZ0wyCAuiAFOBRtWotyyjNB70mcdBxWRzMbFaKBDvO6YLu5p444CPGJfZxREWjuQqXNKAnf2vVaSn2mdHHqHccFVlgNTdNyolwsMGpfbwV1uGAUxcIBQw91bMb0jhlBwO6y4IYTvv/wR3O7Ww736bmO/dnI6Gccc+onW0CYK0QE6QRfoCjUR9Ra9Pe+Xd+Sv+If+sf97bPW9Sc4qehP+nxfJIcPT sigma O[2] O[1] Q[20] Q[19] Q[18] Q[17] Q[16] Q[15] Q[14] Q[13] Q[12] Q[11] Q[10] Q[9] Q[8] Q[7] Q[6] Q[5] Q[4] Q[3] Q[2] Q[1] -1.5 -1.0 -0.5 0.0 0.5 1.0 Value wines origins

Slide 83

Slide 83 text

mQOJ <- ulam( alist( S ~ dnorm(mu,sigma), mu <- (Q[W] + O[X] - H[J])*D[J], Q[W] ~ dnorm(0,1), O[X] ~ dnorm(0,1), H[J] ~ dnorm(0,1), D[J] ~ dexp(1), sigma ~ dexp(1) ) , data=dat , chains=4 ) plot(precis(mQOJ,2)) Q S J X Z Si ⇠ Normal(µi , ) µi = (QW [i] + OX[i] HJ[i] )DJ[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) Hj ⇠ Normal(0, 1) Dj ⇠ Normal(0, 1) ⇠ Exponential(1) AAAC5XicfVJNbxMxEPVuC5QUaIAjF4uIKhEl2m0rwaVSBa0UcaCNSppI2ZXldZzU1B8r24sarXLnwgFU9dr/1Fv/Sw94N3ugH8pIlp7fezMej52knBkbBNeev7T86PGTlae11WfPX6zVX746NirThPaI4koPEmwoZ5L2LLOcDlJNsUg47SenXwq9/5Nqw5T8bqcpjQWeSDZmBFtHofrNEWJwPTJMwMjSM5t/U1pgPmtGIkNswwkTgVtRVCv3cH0HNmEX5f0hi2fwPTxA+aCEH2AH5V9L2NqrkMvqoh8PVg82wqLowWK5s1jeWyzPe7/l2D9LlaTSssIWtlC9EbSDMuB9EFagAao4RPWraKRIJlwJwrExwzBIbZxjbRnhdFaLMkNTTE7xhA4dlFhQE+flK83gO8eM4Fhpt6SFJft/Ro6FMVOROKfA9sTc1QryIW2Y2fGnOGcyzSyVZH7QOOPQKlg8ORwxTYnlUwcw0cz1CskJ1phY9zFqbgjh3SvfB8eb7XCrvdndbux+rsaxAt6At6AJQvAR7IIOOAQ9QLzE++X98f76E/+3f+5fzK2+V+W8BrfCv/wHQKDiqw==

Slide 84

Slide 84 text

Si ⇠ Normal(µi , ) µi = (QW [i] + OX[i] HJ[i] )DJ[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) Hj ⇠ Normal(0, 1) Dj ⇠ Normal(0, 1) ⇠ Exponential(1) AAAC5XicfVJNbxMxEPVuC5QUaIAjF4uIKhEl2m0rwaVSBa0UcaCNSppI2ZXldZzU1B8r24sarXLnwgFU9dr/1Fv/Sw94N3ugH8pIlp7fezMej52knBkbBNeev7T86PGTlae11WfPX6zVX746NirThPaI4koPEmwoZ5L2LLOcDlJNsUg47SenXwq9/5Nqw5T8bqcpjQWeSDZmBFtHofrNEWJwPTJMwMjSM5t/U1pgPmtGIkNswwkTgVtRVCv3cH0HNmEX5f0hi2fwPTxA+aCEH2AH5V9L2NqrkMvqoh8PVg82wqLowWK5s1jeWyzPe7/l2D9LlaTSssIWtlC9EbSDMuB9EFagAao4RPWraKRIJlwJwrExwzBIbZxjbRnhdFaLMkNTTE7xhA4dlFhQE+flK83gO8eM4Fhpt6SFJft/Ro6FMVOROKfA9sTc1QryIW2Y2fGnOGcyzSyVZH7QOOPQKlg8ORwxTYnlUwcw0cz1CskJ1phY9zFqbgjh3SvfB8eb7XCrvdndbux+rsaxAt6At6AJQvAR7IIOOAQ9QLzE++X98f76E/+3f+5fzK2+V+W8BrfCv/wHQKDiqw== expected score

Slide 85

Slide 85 text

Si ⇠ Normal(µi , ) µi = (QW [i] + OX[i] HJ[i] )DJ[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) Hj ⇠ Normal(0, 1) Dj ⇠ Normal(0, 1) ⇠ Exponential(1) AAAC5XicfVJNbxMxEPVuC5QUaIAjF4uIKhEl2m0rwaVSBa0UcaCNSppI2ZXldZzU1B8r24sarXLnwgFU9dr/1Fv/Sw94N3ugH8pIlp7fezMej52knBkbBNeev7T86PGTlae11WfPX6zVX746NirThPaI4koPEmwoZ5L2LLOcDlJNsUg47SenXwq9/5Nqw5T8bqcpjQWeSDZmBFtHofrNEWJwPTJMwMjSM5t/U1pgPmtGIkNswwkTgVtRVCv3cH0HNmEX5f0hi2fwPTxA+aCEH2AH5V9L2NqrkMvqoh8PVg82wqLowWK5s1jeWyzPe7/l2D9LlaTSssIWtlC9EbSDMuB9EFagAao4RPWraKRIJlwJwrExwzBIbZxjbRnhdFaLMkNTTE7xhA4dlFhQE+flK83gO8eM4Fhpt6SFJft/Ro6FMVOROKfA9sTc1QryIW2Y2fGnOGcyzSyVZH7QOOPQKlg8ORwxTYnlUwcw0cz1CskJ1phY9zFqbgjh3SvfB8eb7XCrvdndbux+rsaxAt6At6AJQvAR7IIOOAQ9QLzE++X98f76E/+3f+5fzK2+V+W8BrfCv/wHQKDiqw== expected score wine quality

Slide 86

Slide 86 text

Si ⇠ Normal(µi , ) µi = (QW [i] + OX[i] HJ[i] )DJ[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) Hj ⇠ Normal(0, 1) Dj ⇠ Normal(0, 1) ⇠ Exponential(1) AAAC5XicfVJNbxMxEPVuC5QUaIAjF4uIKhEl2m0rwaVSBa0UcaCNSppI2ZXldZzU1B8r24sarXLnwgFU9dr/1Fv/Sw94N3ugH8pIlp7fezMej52knBkbBNeev7T86PGTlae11WfPX6zVX746NirThPaI4koPEmwoZ5L2LLOcDlJNsUg47SenXwq9/5Nqw5T8bqcpjQWeSDZmBFtHofrNEWJwPTJMwMjSM5t/U1pgPmtGIkNswwkTgVtRVCv3cH0HNmEX5f0hi2fwPTxA+aCEH2AH5V9L2NqrkMvqoh8PVg82wqLowWK5s1jeWyzPe7/l2D9LlaTSssIWtlC9EbSDMuB9EFagAao4RPWraKRIJlwJwrExwzBIbZxjbRnhdFaLMkNTTE7xhA4dlFhQE+flK83gO8eM4Fhpt6SFJft/Ro6FMVOROKfA9sTc1QryIW2Y2fGnOGcyzSyVZH7QOOPQKlg8ORwxTYnlUwcw0cz1CskJ1phY9zFqbgjh3SvfB8eb7XCrvdndbux+rsaxAt6At6AJQvAR7IIOOAQ9QLzE++X98f76E/+3f+5fzK2+V+W8BrfCv/wHQKDiqw== expected score wine quality origin

Slide 87

Slide 87 text

Si ⇠ Normal(µi , ) µi = (QW [i] + OX[i] HJ[i] )DJ[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) Hj ⇠ Normal(0, 1) Dj ⇠ Normal(0, 1) ⇠ Exponential(1) AAAC5XicfVJNbxMxEPVuC5QUaIAjF4uIKhEl2m0rwaVSBa0UcaCNSppI2ZXldZzU1B8r24sarXLnwgFU9dr/1Fv/Sw94N3ugH8pIlp7fezMej52knBkbBNeev7T86PGTlae11WfPX6zVX746NirThPaI4koPEmwoZ5L2LLOcDlJNsUg47SenXwq9/5Nqw5T8bqcpjQWeSDZmBFtHofrNEWJwPTJMwMjSM5t/U1pgPmtGIkNswwkTgVtRVCv3cH0HNmEX5f0hi2fwPTxA+aCEH2AH5V9L2NqrkMvqoh8PVg82wqLowWK5s1jeWyzPe7/l2D9LlaTSssIWtlC9EbSDMuB9EFagAao4RPWraKRIJlwJwrExwzBIbZxjbRnhdFaLMkNTTE7xhA4dlFhQE+flK83gO8eM4Fhpt6SFJft/Ro6FMVOROKfA9sTc1QryIW2Y2fGnOGcyzSyVZH7QOOPQKlg8ORwxTYnlUwcw0cz1CskJ1phY9zFqbgjh3SvfB8eb7XCrvdndbux+rsaxAt6At6AJQvAR7IIOOAQ9QLzE++X98f76E/+3f+5fzK2+V+W8BrfCv/wHQKDiqw== expected score wine quality origin judge harshness judge discrimination

Slide 88

Slide 88 text

Q S J X Z Si ⇠ Normal(µi , ) µi = (QW [i] + OX[i] HJ[i] )DJ[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) Hj ⇠ Normal(0, 1) Dj ⇠ Normal(0, 1) ⇠ Exponential(1) AAAC5XicfVJNbxMxEPVuC5QUaIAjF4uIKhEl2m0rwaVSBa0UcaCNSppI2ZXldZzU1B8r24sarXLnwgFU9dr/1Fv/Sw94N3ugH8pIlp7fezMej52knBkbBNeev7T86PGTlae11WfPX6zVX746NirThPaI4koPEmwoZ5L2LLOcDlJNsUg47SenXwq9/5Nqw5T8bqcpjQWeSDZmBFtHofrNEWJwPTJMwMjSM5t/U1pgPmtGIkNswwkTgVtRVCv3cH0HNmEX5f0hi2fwPTxA+aCEH2AH5V9L2NqrkMvqoh8PVg82wqLowWK5s1jeWyzPe7/l2D9LlaTSssIWtlC9EbSDMuB9EFagAao4RPWraKRIJlwJwrExwzBIbZxjbRnhdFaLMkNTTE7xhA4dlFhQE+flK83gO8eM4Fhpt6SFJft/Ro6FMVOROKfA9sTc1QryIW2Y2fGnOGcyzSyVZH7QOOPQKlg8ORwxTYnlUwcw0cz1CskJ1phY9zFqbgjh3SvfB8eb7XCrvdndbux+rsaxAt6At6AJQvAR7IIOOAQ9QLzE++X98f76E/+3f+5fzK2+V+W8BrfCv/wHQKDiqw== sigma D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] H[9] H[8] H[7] H[6] H[5] H[4] H[3] H[2] H[1] O[2] O[1] Q[20] Q[19] Q[18] Q[17] Q[16] Q[15] Q[14] Q[13] Q[12] Q[11] Q[10] Q[9] Q[8] Q[7] Q[6] Q[5] Q[4] Q[3] Q[2] Q[1] -3 -2 -1 0 1 2 harshness discrimination

Slide 89

Slide 89 text

Q S J X Z Si ⇠ Normal(µi , ) µi = (QW [i] + OX[i] HJ[i] )DJ[i] Qj ⇠ Normal(0, 1) Oj ⇠ Normal(0, 1) Hj ⇠ Normal(0, 1) Dj ⇠ Normal(0, 1) ⇠ Exponential(1) AAAC5XicfVJNbxMxEPVuC5QUaIAjF4uIKhEl2m0rwaVSBa0UcaCNSppI2ZXldZzU1B8r24sarXLnwgFU9dr/1Fv/Sw94N3ugH8pIlp7fezMej52knBkbBNeev7T86PGTlae11WfPX6zVX746NirThPaI4koPEmwoZ5L2LLOcDlJNsUg47SenXwq9/5Nqw5T8bqcpjQWeSDZmBFtHofrNEWJwPTJMwMjSM5t/U1pgPmtGIkNswwkTgVtRVCv3cH0HNmEX5f0hi2fwPTxA+aCEH2AH5V9L2NqrkMvqoh8PVg82wqLowWK5s1jeWyzPe7/l2D9LlaTSssIWtlC9EbSDMuB9EFagAao4RPWraKRIJlwJwrExwzBIbZxjbRnhdFaLMkNTTE7xhA4dlFhQE+flK83gO8eM4Fhpt6SFJft/Ro6FMVOROKfA9sTc1QryIW2Y2fGnOGcyzSyVZH7QOOPQKlg8ORwxTYnlUwcw0cz1CskJ1phY9zFqbgjh3SvfB8eb7XCrvdndbux+rsaxAt6At6AJQvAR7IIOOAQ9QLzE++X98f76E/+3f+5fzK2+V+W8BrfCv/wHQKDiqw== -2 -1 0 1 0.0 0.2 0.4 0.6 0.8 origin contrast Density

Slide 90

Slide 90 text

e Folk eorem of Statistical Computing “When you have computational problems, o en there’s a problem with your model.” Andrew Gelman Spider-Man of Bayesian data analysis

Slide 91

Slide 91 text

No content

Slide 92

Slide 92 text

Divergent transitions Divergent transition: A kind of rejected proposal Simulation diverges from true path Many DTs: poor exploration & possible bias Will discuss again in later lecture

Slide 93

Slide 93 text

El Pueblo Unido Desktop MCMC has been a revolution in scienti c computing Custom scienti c modeling High-dimension Propagate measurement error Sir David Spiegelhalter

Slide 94

Slide 94 text

Course Schedule Week 1 Bayesian inference Chapters 1, 2, 3 Week 2 Linear models & Causal Inference Chapter 4 Week 3 Causes, Confounds & Colliders Chapters 5 & 6 Week 4 Over tting / MCMC Chapters 7, 8, 9 Week 5 Generalized Linear Models Chapters 10, 11 Week 6 Integers & Other Monsters Chapters 11 & 12 Week 7 Multilevel models I Chapter 13 Week 8 Multilevel models II Chapter 14 Week 9 Measurement & Missingness Chapter 15 Week 10 Generalized Linear Madness Chapter 16 https://github.com/rmcelreath/stat_rethinking_2023

Slide 95

Slide 95 text

No content