Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
LiDARとカメラのセンサーフュージョン による点群のノイズ除去 ImVisionLabs株式会社代表取締役 板倉健太 博士(農学)
Slide 2
Slide 2 text
3次元点群について [a] ScanX2.0 3次元点群:点の集まりにより3次元形状を表現する 3次元点群を利用し、森林の地表面の形状や高さなどを調べる →伐採計画や温室効果ガスの吸収量を調べることなどに利用 画像出典: 2024年1月26日 朝日新聞 教育科学面 「地図×データ 湧くアイデア」 ※東京都より公開されている 東京都デジタルツイン実現プロジェクトのデータを利用しています
Slide 3
Slide 3 text
3次元点群の分類について [a] ScanX2.0 点群から情報を得るためには、点群の分類が重要 例)樹木の量を知るために、植生を抽出、電線を抽出、対象外の自動車の点群を除去
Slide 4
Slide 4 text
ノイズ除去について ScanX2.0 点群データを処理する際には、ノイズの点を除去する必要がある ノイズ 本発表では、点群から人のノイズ除去を行う 3次元点群での、計測対象外の人のノイズ除去は一般的に難しい 一般的なノイズ 点群中の人のノイズ
Slide 5
Slide 5 text
地上型レーザースキャナ(LiDAR)による計測 4 ◼ 3次元点群を取得する方法として、地上型レーザースキャナがよく利用される 画像も同時に取得されることが多い 画像出典: Matterport URL: https://matterport.com/ja/pro3
Slide 6
Slide 6 text
LiDARとカメラのセンサーフュージョンによるノイズ除去 人のセグメンテーション 点群でのノイズ除去 セ ン サ ー フ ュ ー ジ ョ ン 画像(2D) LiDARで取得した点群(3D) ◼ 画像上で人のセグメンテーションをし、その結果を点群上にマッピング
Slide 7
Slide 7 text
画像での人のセグメンテーション 6 ◼ Solov2を利用 • 人のセグメンテーションができるのではないか
Slide 8
Slide 8 text
LiDARとカメラのセンサーフュージョン 7 ◼ チェッカーボードを利用してLiDARとカメラのクロスキャリブレーションを実行 ◼ 画像および点群のチェッカーボードの角の情報などを利用 画像からチェッカーボードの認識 チェッカーボードの点群 チェッカーボードの点群を画像に投影
Slide 9
Slide 9 text
LiDARとカメラのセンサーフュージョンによるノイズ除去 8 ◼ 人を対象として、ノイズ除去を実行: 結果を赤で表示 [a] [b] [c] [d]
Slide 10
Slide 10 text
◼ [a]・[b]は対象の点群、[c]・[d]はノイズ除去の結果 LiDARとカメラのセンサーフュージョンによるノイズ除去 [a] [b] [c] [d]
Slide 11
Slide 11 text
◼ 対象までの距離が遠い場合もうまくノイズ除去ができている LiDARとカメラのセンサーフュージョンによるノイズ除去 [a] [b] [c] ◼ 従来のノイズ除去手法では難しい対象も、センサーフュージョンによりうまく 処理することができた
Slide 12
Slide 12 text
まとめ 11 バックパック型スキャナー iPhone12 LiDAR LiDARとカメラのセンサーフュージョンを用いて3次元点群のノイズ分類を行いました 画像にてSolov2によりセグメンテーションした情報を点群にマッピングしました [動画] 本研究は、東京大学工学部全邦釘先生とのプロジェクトにて行われました