×
Copy
Open
Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
ML: regularization and neural networks March 2017
Slide 2
Slide 2 text
Recap
Slide 3
Slide 3 text
Recap: linear regression
Slide 4
Slide 4 text
Recap: polynomial regression
Slide 5
Slide 5 text
Recap: gradient descent
Slide 6
Slide 6 text
Regularization
Slide 7
Slide 7 text
Normalization Goal : have all features be equivalent (in size) Rescaling : Standardization :
Slide 8
Slide 8 text
Regularization : goal
Slide 9
Slide 9 text
Regularization Before : Now : Forces values to stay low
Slide 10
Slide 10 text
Neural networks
Slide 11
Slide 11 text
Demo: Tensorflow Playground
Slide 12
Slide 12 text
Biological neuron
Slide 13
Slide 13 text
Artificial neuron: Perceptron
Slide 14
Slide 14 text
Teaching a neuron
Slide 15
Slide 15 text
Artifical neuron : activation function
Slide 16
Slide 16 text
Most common activation functions Identity Sigmoid Tanh ReLU
Slide 17
Slide 17 text
Teaching a neuron
Slide 18
Slide 18 text
Demo: simple network, but the hard way (92%)
Slide 19
Slide 19 text
Demo: simple network, but the hard way (92%)
Slide 20
Slide 20 text
Artificial neuron -> Artificial neural network
Slide 21
Slide 21 text
Artificial neuron -> Artificial neural network
Slide 22
Slide 22 text
Teaching a neural net
Slide 23
Slide 23 text
Demo: Tensorflow Playground
Slide 24
Slide 24 text
Demo: layered network, still the hard way (97%)
Slide 25
Slide 25 text
Questions? March 2017