Slide 1

Slide 1 text

11 Reproducible RNA-seq analysis with Leonardo Collado-Torres @fellgernon #bioc2017

Slide 2

Slide 2 text

Reference genome Reads

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

GTEx TCGA slide adapted from Shannon Ellis

Slide 5

Slide 5 text

SRA

Slide 6

Slide 6 text

Slide adapted from Ben Langmead

Slide 7

Slide 7 text

http://rail.bio/ Slide adapted from Ben Langmead

Slide 8

Slide 8 text

http://blogs.citrix.com/2012/10/17/announcing-general-availability-of-sharefile-with-storagezones/

Slide 9

Slide 9 text

https://jhubiostatistics.shinyapps.io/recount/

Slide 10

Slide 10 text

jx 1 jx 2 jx 3 jx 4 jx 5 jx 6 Coverage Reads Gene Isoform 1 Isoform 2 Potential isoform 3 exon 1 exon 2 exon 3 exon 4 Expressed region 1: potential exon 5

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

exon 1 exon 2 exon 3

Slide 13

Slide 13 text

disjoint exon 1 disjoint exon 2 disjoint exon 3

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

5 10 15 0 1 2 3 4 5 Genome Coverage 3 3 5 4 4 2 2 3 1 3 3 1 4 4 2 1 AUC = area under coverage = 45

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

> library('recount') > download_study( 'ERP001942', type='rse-gene') > load(file.path('ERP001942 ', 'rse_gene.Rdata')) > rse <- scale_counts(rse_gene) https://github.com/leekgroup/recount-analyses/

Slide 20

Slide 20 text

slide adapted from Jeff Leek

Slide 21

Slide 21 text

>library('recount') > download_study('SRP029880', type='rse-gene') > download_study('SRP059039', type='rse-gene') > load(file.path('SRP029880 ', 'rse_gene.Rdata')) > load(file.path('SRP059039', 'rse_gene.Rdata')) > mdat <- do.call(cbind, dat) https://github.com/leekgroup/recount-analyses/

Slide 22

Slide 22 text

Collado Torres et al. Nat. Biotech 2017

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

jx 1 jx 2 jx 3 jx 4 jx 5 jx 6 Coverage Reads Gene Isoform 1 Isoform 2 Potential isoform 3 exon 1 exon 2 exon 3 exon 4 Expressed region 1: potential exon 5

Slide 27

Slide 27 text

Collado-Torres et al, NAR, 2017

Slide 28

Slide 28 text

Fetal Infant Child Teen Adult 50+ 6 / group, N = 36 Discovery data Jaffe et al, Nat. Neuroscience, 2015 Postmortem Human Brain Samples Fetal Infant Child Teen Adult 50+ 6 / group, N = 36 Replication data

Slide 29

Slide 29 text

Jaffe et al, Nat. Neuroscience, 2015

Slide 30

Slide 30 text

BrainSpan data Jaffe et al, Nat. Neuroscience, 2015

Slide 31

Slide 31 text

expression data for ~70,000 human samples GTEx N=9,962 TCGA N=11,284 SRA N=49,848 samples expression estimates gene exon junctions ERs slide adapted from Shannon Ellis

Slide 32

Slide 32 text

expression data for ~70,000 human samples Answer meaningful questions about human biology and expression GTEx N=9,962 TCGA N=11,284 SRA N=49,848 samples expression estimates gene exon junctions ERs slide adapted from Shannon Ellis

Slide 33

Slide 33 text

expression data for ~70,000 human samples samples phenotypes ? GTEx N=9,962 TCGA N=11,284 SRA N=49,848 samples expression estimates gene exon junctions ERs Answer meaningful questions about human biology and expression slide adapted from Shannon Ellis

Slide 34

Slide 34 text

Category Frequency F 95 female 2036 Female 51 M 77 male 1240 Male 141 Total 3640 Even when information is provided, it’s not always clear… sra_meta$Se x “1 Male, 2 Female”, “2 Male, 1 Female”, “3 Female”, “DK”, “male and female” “Male (note: ….)”, “missing”, “mixed”, “mixture”, “N/A”, “Not available”, “not applicable”, “not collected”, “not determined”, “pooled male and female”, “U”, “unknown”, “Unknown” slide adapted from Shannon Ellis

Slide 35

Slide 35 text

SRA phenotype information is far from complete SubjectID Sex Tissue Race Age 6620 NA female liver NA NA 6621 NA female liver NA NA 6622 NA female liver NA NA 6623 NA female liver NA NA 6624 NA female liver NA NA 6625 NA male liver NA NA 6626 NA male liver NA NA 6627 NA male liver NA NA 6628 NA male liver NA NA 6629 NA male liver NA NA 6630 NA male liver NA NA 6631 NA NA blood NA NA 6632 NA NA blood NA NA 6633 NA NA blood NA NA 6634 NA NA blood NA NA 6635 NA NA blood NA NA 6636 NA NA blood NA NA z z z z slide adapted from Shannon Ellis

Slide 36

Slide 36 text

Goal : to accurately predict critical phenotype information for all samples in recount gene, exon, exon-exon junction and expressed region RNA-Seq data SRA Sequence Read Archive N=49,848 TCGA The Cancer Genome Atlas N=11,284 GTEx Genotype Tissue Expression Project N=9,662 slide adapted from Shannon Ellis

Slide 37

Slide 37 text

Goal : to accurately predict critical phenotype information for all samples in recount gene, exon, exon-exon junction and expressed region RNA-Seq data SRA Sequence Read Archive N=49,848 GTEx Genotype Tissue Expression Project N=9,662 divide samples build and optimize phenotype predictor training set test accuracy of predictor test set TCGA The Cancer Genome Atlas N=11,284 slide adapted from Shannon Ellis

Slide 38

Slide 38 text

Goal : to accurately predict critical phenotype information for all samples in recount gene, exon, exon-exon junction and expressed region RNA-Seq data SRA Sequence Read Archive N=49,848 GTEx Genotype Tissue Expression Project N=9,662 divide samples build and optimize phenotype predictor training set test accuracy of predictor predict phenotypes across samples in TCGA test set TCGA The Cancer Genome Atlas N=11,284 slide adapted from Shannon Ellis

Slide 39

Slide 39 text

Goal : to accurately predict critical phenotype information for all samples in recount gene, exon, exon-exon junction and expressed region RNA-Seq data SRA Sequence Read Archive N=49,848 GTEx Genotype Tissue Expression Project N=9,662 divide samples build and optimize phenotype predictor training set predict phenotypes across SRA samples test accuracy of predictor predict phenotypes across samples in TCGA test set TCGA The Cancer Genome Atlas N=11,284 slide adapted from Shannon Ellis

Slide 40

Slide 40 text

select_regions() Output: Coverage matrix (data.frame) Region information (GRanges) slide adapted from Shannon Ellis

Slide 41

Slide 41 text

Sex prediction is accurate across data sets Number of Regions 20 20 20 20 Number of Samples (N) 4,769 4,769 11,245 3,640 99.8% 99.6% 99.4% 88.5% slide adapted from Shannon Ellis

Slide 42

Slide 42 text

Sex prediction is accurate across data sets Number of Regions 20 20 20 20 Number of Samples (N) 4,769 4,769 11,245 3,640 99.8% 99.6% 99.4% 88.5% slide adapted from Shannon Ellis

Slide 43

Slide 43 text

http://www.rna-seqblog.com/ Can we use expression data to predict tissue? slide adapted from Shannon Ellis

Slide 44

Slide 44 text

Number of Regions 589 589 589 589 Number of Samples (N) 4,769 4,769 7,193 8,951 97.3% 96.5% 71.9% 50.6% Tissue prediction is accurate across data sets slide adapted from Shannon Ellis

Slide 45

Slide 45 text

Number of Regions 589 589 589 589 589 Number of Samples (N) 4,769 4,769 613 6,579 8,951 97.3% 96.5% 91.0% 70.2% Prediction is more accurate in healthy tissue 50.6% slide adapted from Shannon Ellis

Slide 46

Slide 46 text

> library('recount') > download_study( 'ERP001942', type='rse-gene') > load(file.path('ERP001942 ', 'rse_gene.Rdata')) > rse <- scale_counts(rse_gene) > rse_with_pred <- add_predictions(rse_gene) https://github.com/leekgroup/recount-analyses/

Slide 47

Slide 47 text

expression data for ~70,000 human samples samples phenotypes ? GTEx N=9,962 TCGA N=11,284 SRA N=49,848 samples expression estimates gene exon junctions ERs Answer meaningful questions about human biology and expression sex tissue M Blood F Heart F Liver slide adapted from Shannon Ellis

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

Collaborators The Leek Group Jeff Leek Shannon Ellis Hopkins Ben Langmead Chris Wilks Kai Kammers Kasper Hansen Margaret Taub OHSU Abhinav Nellore LIBD Andrew Jaffe Emily Burke Stephen Semick Carrie Wright Amanda Price Nina Rajpurohit Funding NIH R01 GM105705 NIH 1R21MH109956 CONACyT 351535 AWS in Education Seven Bridges IDIES SciServer

Slide 50

Slide 50 text

11 http://research.libd.org/recountWorkshop/ help(package = recountWorkshop) file.edit( system.file('doc/recount-workshop.Rmd', package = 'recountWorkshop') ) Leonardo Collado-Torres @fellgernon #bioc2017

Slide 51

Slide 51 text

expression data for ~70,000 human samples (Multiple) Postdoc positions available to - develop methods to process and analyze data from recount2 - use recount2 to address specific biological questions This project involves the Hansen, Leek, Langmead and Battle labs at JHU Contact: Kasper D. Hansen ([email protected] | www.hansenlab.org)