Building Interactive Data
Visualization Systems: A Tool
for Light Curve Exploration
Zhe Wang
PhD Student
Department of Computer Science
University of Arizona
Slide 2
Slide 2 text
Interactive Data Visualization
• Make the visual representation of information
respond to human input
• Human-Data Interaction
Slide 3
Slide 3 text
Why interactive data
visualization?
Raw Data
Data
Product
Data Vis
Data
Analysis
Data Vis
Slide 4
Slide 4 text
Data Exploration
• First step before a formal data analysis
• Help the user to get familiar with the dataset
• Ask questions you may not even have
raw data
collection
data
cleaning
data
exploration
Design
models &
algorithms
Data
product
Problem 1: Speed up PCA
Calculation
• Data Cube
• Precompute the intermediate parameters that will
be used by PCA
• Example (http://vis.stanford.edu/projects/immens/)
Slide 15
Slide 15 text
Speed up PCA calculation
• Covariance Matrix
a b c
… … …
extra space for each row in the data cube
for d-dimension dataset
Slide 16
Slide 16 text
Problem 2: Speed up PCA
Plotting
• 1 million points??
Slide 17
Slide 17 text
Speed up PCA Plotting
• 1 million points?? Heat map !
Slide 18
Slide 18 text
Speed up PCA Plotting
• Specialized Data Structure (For extremely large dataset)
10 20
(5, 20)
(5, 15) (15, 20)
(5, 10) (10, 15)
Slide 19
Slide 19 text
Demo
Slide 20
Slide 20 text
Technical Detail
HTML+Javascript(D3)
JSON
Client
Server
Python(Flask)
Data Cube
Slide 21
Slide 21 text
Build an interactive
visualization system
• Overview of the entire dataset + linked charts
showing details of subsets.
• SVG or Canvas or WebGL?
• Special Data Structure