Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

human-computer collaboration mauricio giraldo arteaga @mgiraldo @nypl_labs IPAM Culture Analytics and User Experience Design, April 2016

Slide 3

Slide 3 text

hello

Slide 4

Slide 4 text

not a real library scientist

Slide 5

Slide 5 text

flickr.com/photos/wallyg/6133216510

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

Eric Shows

Slide 9

Slide 9 text

NYPL Labs

Slide 10

Slide 10 text

access digitization metadata public traditional digital library program

Slide 11

Slide 11 text

access digitization metadata public engagement r+d

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

what happens after digitization?

Slide 15

Slide 15 text

human-computer collaboration

Slide 16

Slide 16 text

¿ ?

Slide 17

Slide 17 text

embrace imperfection corollary of “perfect is the enemy of good”

Slide 18

Slide 18 text

« A designer’s definition of ‘perfect’ is different for computational designers. » because it is not achievable John Maeda

Slide 19

Slide 19 text

human-computer collaboration

Slide 20

Slide 20 text

computers are good at some things…

Slide 21

Slide 21 text

Randall Munroe - xkcd.com/1140

Slide 22

Slide 22 text

David Hagen - drhagen.com/blog/the-missing-11th-of-the-month

Slide 23

Slide 23 text

people overestimate OCR quality

Slide 24

Slide 24 text

OCR result

Slide 25

Slide 25 text

okay… so maybe computers are not that good

Slide 26

Slide 26 text

people are good at other things

Slide 27

Slide 27 text

human-computer collaboration i avoid the term “crowdsourcing”

Slide 28

Slide 28 text

two examples

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

footprint material use type street names address floors name class geo location year skylights backyards

Slide 34

Slide 34 text

like Google Maps for the 19th century but Google Maps cannot answer questions about the 19th century

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

*this is a simulation. actual process is intensive. consult your mathematician before trying

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

No content

Slide 41

Slide 41 text

and now you start tracing those buildings by hand (˽°□°)˽Ɨ ˍʓʓˍ

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

1852-1854

Slide 44

Slide 44 text

1852-1854

Slide 45

Slide 45 text

can we automate this?

Slide 46

Slide 46 text

computers are good at some things…

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

No content

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

yay footprints! 60,000+ of those!

Slide 55

Slide 55 text

like OCR for maps!™ (not really trademarked)

Slide 56

Slide 56 text

but OCR is pretty bad ಠ_ಠ

Slide 57

Slide 57 text

No content

Slide 58

Slide 58 text

people are good at other things!

Slide 59

Slide 59 text

No content

Slide 60

Slide 60 text

No content

Slide 61

Slide 61 text

people don’t choose to complete these

Slide 62

Slide 62 text

we have over 60,000 footprints to check! will people want to do this?

Slide 63

Slide 63 text

what is the minimum contribution we need? we want the lowest friction possible so people will want to contribute

Slide 64

Slide 64 text

this was 2013, touch-screen mobile had taken off

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

what about malicious users? or even well-meaning ones who make mistakes

Slide 67

Slide 67 text

No content

Slide 68

Slide 68 text

75% or more agreement between 3 or more people arbitrary numbers that have worked for us

Slide 69

Slide 69 text

No content

Slide 70

Slide 70 text

YES is on the right side because most people are right-handed and the algorithm is right most of the time

Slide 71

Slide 71 text

Building Inspector buildinginspector.nypl.org

Slide 72

Slide 72 text

will people participate? remember that little tweet button?

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

No content

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

footprint material use type street names address floors name class geo location year skylights backyards

Slide 77

Slide 77 text

No content

Slide 78

Slide 78 text

No content

Slide 79

Slide 79 text

check YES FIX address color fix *footprints marked as “NO” go to polygon heaven

Slide 80

Slide 80 text

address had to use full keyboard on mobile because fractions

Slide 81

Slide 81 text

classify

Slide 82

Slide 82 text

fix

Slide 83

Slide 83 text

place names

Slide 84

Slide 84 text

No content

Slide 85

Slide 85 text

we add new maps as old ones are completed the bottleneck now became geo-rectifying those maps ¯\_(ϑ)_/¯

Slide 86

Slide 86 text

this is actually version 2

Slide 87

Slide 87 text

(the magic of git)

Slide 88

Slide 88 text

No content

Slide 89

Slide 89 text

No content

Slide 90

Slide 90 text

No content

Slide 91

Slide 91 text

good tutorials are hard

Slide 92

Slide 92 text

No content

Slide 93

Slide 93 text

Super Mario Bros. (Nintendo, 1985)

Slide 94

Slide 94 text

we have too many edge cases or: how i learned to stop worrying and embrace imperfection

Slide 95

Slide 95 text

No content

Slide 96

Slide 96 text

¯\_(ϑ)_/¯ people skip them anyway

Slide 97

Slide 97 text

No content

Slide 98

Slide 98 text

coming soon

Slide 99

Slide 99 text

No content

Slide 100

Slide 100 text

No content

Slide 101

Slide 101 text

No content

Slide 102

Slide 102 text

No content

Slide 103

Slide 103 text

NYPL Community Oral History Project oralhistory.nypl.org

Slide 104

Slide 104 text

No content

Slide 105

Slide 105 text

No content

Slide 106

Slide 106 text

make these stories more accessible

Slide 107

Slide 107 text

No content

Slide 108

Slide 108 text

mark transcribe

Slide 109

Slide 109 text

by brian foo @beefoo

Slide 110

Slide 110 text

allows for basic text search but it’s not a proper transcript

Slide 111

Slide 111 text

No content

Slide 112

Slide 112 text

No content

Slide 113

Slide 113 text

we felt we needed something different

Slide 114

Slide 114 text

No content

Slide 115

Slide 115 text

computers are good at some things…

Slide 116

Slide 116 text

like OCR for audio!™ (not sure if they trademarked that)

Slide 117

Slide 117 text

we get transcription “snippets” from 1 to about 6 seconds long in varying levels of quality

Slide 118

Slide 118 text

No content

Slide 119

Slide 119 text

people are good at other things…

Slide 120

Slide 120 text

No content

Slide 121

Slide 121 text

No content

Slide 122

Slide 122 text

by brian foo @beefoo

Slide 123

Slide 123 text

we conducted a few usability studies

Slide 124

Slide 124 text

by brian foo @beefoo

Slide 125

Slide 125 text

No content

Slide 126

Slide 126 text

No content

Slide 127

Slide 127 text

it’s hard to reach consensus ಠ_ಠ

Slide 128

Slide 128 text

embrace imperfection

Slide 129

Slide 129 text

transcribe.oralhistory.nypl.org

Slide 130

Slide 130 text

transcribe.oralhistory.nypl.org

Slide 131

Slide 131 text

made with customizability in mind

Slide 132

Slide 132 text

storyscribe.themoth.org

Slide 133

Slide 133 text

this is one week after launch

Slide 134

Slide 134 text

it is still being improved

Slide 135

Slide 135 text

two of several projects we’ve worked on so far

Slide 136

Slide 136 text

of human-computer collaboration

Slide 137

Slide 137 text

it’s a collaborative process Willa Armstrong, Shawn Averkamp, Paul Beaudoin, Brian Foo, Josh Hadro, Elizabeth Hummer, Ara Kim, Shana Kimball, Tom Listanti, Matthew Miller, Eric Shows, Bert Spaan, and more at NYPL…

Slide 138

Slide 138 text

one more thing…

Slide 139

Slide 139 text

No content

Slide 140

Slide 140 text

No content

Slide 141

Slide 141 text

No content

Slide 142

Slide 142 text

No content

Slide 143

Slide 143 text

lala.cursivebuildings.com

Slide 144

Slide 144 text

how to decode the 3D data? in the browser

Slide 145

Slide 145 text

No content

Slide 146

Slide 146 text

No content

Slide 147

Slide 147 text

No content

Slide 148

Slide 148 text

No content

Slide 149

Slide 149 text

No content

Slide 150

Slide 150 text

stereo.nypl.org

Slide 151

Slide 151 text

No content

Slide 152

Slide 152 text

No content

Slide 153

Slide 153 text

No content

Slide 154

Slide 154 text

No content

Slide 155

Slide 155 text

No content

Slide 156

Slide 156 text

Boston Public Library Boston Public Library U.S. Geological Survey U.S. Geological Survey

Slide 157

Slide 157 text

thank you! mauricio giraldo arteaga @mgiraldo @nypl_labs IPAM Culture Analytics and User Experience Design, April 2016