Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

• • 𝑝(𝑥) {𝑥𝑖 }𝑖=1 𝑁 𝑥~𝑝(𝑥)

Slide 9

Slide 9 text

• • • 𝑝(𝑧) 𝑧~𝑝(𝑧) … … … … … … {𝑥𝑖 }𝑖=1 𝑁 𝑥 = 𝑓(𝑧)

Slide 10

Slide 10 text

Slide 11

Slide 11 text

• • •

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

• • •

Slide 14

Slide 14 text

• • •

Slide 15

Slide 15 text

• • •

Slide 16

Slide 16 text

• • 𝑞 𝑥𝑡 𝑥𝑡−1 ≔ 𝑁(𝑥𝑡 ; 1 − 𝛽𝑡 𝑥𝑡−1 , 𝛽𝑡 𝐈) 𝑥𝑡 = 1 − 𝛽𝑡 𝑥𝑡−1 + 𝛽𝑡 𝜖 𝑞 𝑥1:𝑇 𝑥0 = ෑ 𝑡=1 𝑇 𝑞 𝑥𝑡 𝑥𝑡−1 𝑥𝑖 𝑡=1 𝑇

Slide 17

Slide 17 text

• 𝑥0 𝑥𝑡 • 𝑥0 𝑥𝑡 = 1 − 𝛽𝑡 𝑥𝑡−1 + 𝛽𝑡 𝜖 = 1 − 𝛽𝑡 ( 1 − 𝛽𝑡−1 𝑥𝑡−2 + 𝛽𝑡−1 𝜖′) + 𝛽𝑡 𝜖 = 1 − 𝛽𝑡 1 − 𝛽𝑡−1 𝑥𝑡−2 + 1 − (1 − 𝛽𝑡 )(1 − 𝛽𝑡−1 )𝜖′′ = … = ത 𝛼𝑡 𝑥0 + 1 − ത 𝛼𝑡 𝜖 ത 𝛼𝑡 = ς𝑖=1 𝑡 (1 − 𝛽𝑖 )

Slide 18

Slide 18 text

• 𝑥0 𝑥𝑡 • 𝑥0 𝑥𝑡 = 1 − 𝛽𝑡 𝑥𝑡−1 + 𝛽𝑡 𝜖 = 1 − 𝛽𝑡 ( 1 − 𝛽𝑡−1 𝑥𝑡−2 + 𝛽𝑡−1 𝜖′) + 𝛽𝑡 𝜖 = 1 − 𝛽𝑡 1 − 𝛽𝑡−1 𝑥𝑡−2 + 1 − (1 − 𝛽𝑡 )(1 − 𝛽𝑡−1 )𝜖′′ = … = ത 𝛼𝑡 𝑥0 + 1 − ത 𝛼𝑡 𝜖 ത 𝛼𝑡 = ς𝑖=1 𝑡 (1 − 𝛽𝑖 ) 𝛽𝑡 ത 𝛼𝑡

Slide 19

Slide 19 text

• • •

Slide 20

Slide 20 text

• 𝑥𝑡−1 𝑥𝑡 𝑥𝑡−1 𝑥𝑡 1 − 𝛽𝑡 𝑥𝑡−1 𝑥𝑡−1 𝛽𝑡

Slide 21

Slide 21 text

• 𝑥𝑡−1 𝑥𝑡 𝑥𝑡−1 𝑥𝑡 1 − 𝛽𝑡 𝑥𝑡−1 𝑥𝑡−1 𝛽𝑡 𝛽𝑡 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝑁(𝑥𝑡−1 ; 𝜇𝜃 (𝑥𝑡 ,𝑡), 𝚺𝜃 (𝑥𝑡 ,𝑡)) 𝜎𝑡 2𝑰 𝜎𝑡 2 = 𝛽𝑡

Slide 22

Slide 22 text

# Initialization xt = random.normal(0, 1, (3,H,W)) # Reverse diffusion process for t in range(T, 0, -1): # estimate mean mu = estimate_mean(model, xt, t) # use fixed sigma sigma = beta[t] ** 0.5 # sample x_{t-1} xt = mu + sigma * random.normal(0, 1, (3,H,W)) # return x_0 return xt

Slide 23

Slide 23 text

# Initialization xt = random.normal(0, 1, (3,H,W)) # Reverse diffusion process for t in range(T, 0, -1): # estimate mean mu = estimate_mean(model, xt, t) # use fixed sigma sigma = beta[t] ** 0.5 # sample x_{t-1} xt = mu + sigma * random.normal(0, 1, (3,H,W)) # return x_0 return xt

Slide 24

Slide 24 text

• • •

Slide 25

Slide 25 text

• 𝑝𝜃 (𝑥) 𝑝data (𝑥) • 𝜃∗ = arg min 𝜃 𝐷𝐾𝐿 (𝑝data (𝑥)||𝑝𝜃 (𝑥)) = arg min 𝜃 𝔼𝑝data(𝑥) log𝑝data (𝑥) − 𝔼𝑝data(𝑥) log 𝑝𝜃 (𝑥) = arg min 𝜃 𝔼𝑝data(𝑥) − log 𝑝𝜃 (𝑥)

Slide 26

Slide 26 text

• − log 𝑝𝜃 𝑥0 = − log න 𝑝𝜃 𝑥0:𝑇 d𝑥1:𝑇 = − log න 𝑞(𝑥1:𝑇 |𝑥0 ) 𝑝𝜃 𝑥0:𝑇 𝑞(𝑥1:𝑇 |𝑥0 ) d𝑥1:𝑇 ≤ − න 𝑞 𝑥1:𝑇 𝑥0 log 𝑝𝜃 𝑥0:𝑇 𝑞 𝑥1:𝑇 𝑥0 d𝑥1:𝑇 = 𝔼𝑞(𝑥1:𝑇|𝑥0) log 𝑞 𝑥1:𝑇 𝑥0 𝑝𝜃 𝑥0:𝑇 log𝔼𝑞 [𝑉] ≥ 𝔼𝑞 [log𝑉] 𝑥0 𝑥0:𝑇 𝑥0 𝑥1:𝑇

Slide 27

Slide 27 text

• 𝑞 𝑥1:𝑇 𝑥0 = ෑ 𝑡=1 𝑇 𝑞 𝑥𝑡 𝑥𝑡−1 = 𝐷KL 𝑞 𝑥𝑇 𝑥0 ԡ𝑝𝜃 𝑥𝑇 − 𝔼𝑞(𝑥1|𝑥0) log 𝑝𝜃 (𝑥0 |𝑥1 ) + ෍ 𝑡=2 𝑇 𝔼𝑞(𝑥𝑡|𝑥0) 𝐷KL (𝑞(𝑥𝑡−1 |𝑥𝑡 ,𝑥0 )ԡ𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )) 𝑁(𝑥𝑡−1 ; 𝜇𝜃 (𝑥𝑡 ,𝑡),𝜎𝑡 2𝑰) 𝑁(𝑥𝑡−1 ; ෤ 𝜇𝑡 (𝑥𝑡 ,𝑥0 ), ෨ 𝛽𝑡 𝑰) 𝑥𝑡 𝑥0 𝑥𝑡−1

Slide 28

Slide 28 text

• 𝑞 𝑥1:𝑇 𝑥0 = ෑ 𝑡=1 𝑇 𝑞 𝑥𝑡 𝑥𝑡−1 = 𝐷KL 𝑞 𝑥𝑇 𝑥0 ԡ𝑝𝜃 𝑥𝑇 − 𝔼𝑞(𝑥1|𝑥0) log 𝑝𝜃 (𝑥0 |𝑥1 ) + ෍ 𝑡=2 𝑇 𝔼𝑞(𝑥𝑡|𝑥0) 1 2𝜎𝑡 2 ෤ 𝜇𝑡 𝑥𝑡 ,𝑥0 − 𝜇𝜃 (𝑥𝑡 , 𝑡) 2 + const. 𝑥𝑡 ෤ 𝜇𝑡

Slide 29

Slide 29 text

• ෤ 𝜇𝑡 𝑥𝑡 ,𝑥0 = 𝑐0 𝑥0 + 𝑐1 𝑥𝑡 = 𝑐0 ത 𝛼𝑡 + 𝑐1 𝑥𝑡 − 𝑐0 1 − ത 𝛼𝑡 ത 𝛼𝑡 𝜖 𝑐0 = 𝛽𝑡 1 − 𝛽𝑡−1 1 − ത 𝛼𝑡 , 𝑐1 = 1 − 𝛽𝑡 (1 − ത 𝛼𝑡−1 ) 1 − ത 𝛼𝑡 𝑥𝑡 = ത 𝛼𝑡 𝑥0 + 1 − ത 𝛼𝑡 𝜖 𝑥𝑡 ෤ 𝜇𝑡 𝑥𝑡 𝑥0 𝑥𝑡 𝜖

Slide 30

Slide 30 text

• 𝑞 𝑥1:𝑇 𝑥0 = ෑ 𝑡=1 𝑇 𝑞 𝑥𝑡 𝑥𝑡−1 = 𝐷KL 𝑞 𝑥𝑇 𝑥0 ԡ𝑝𝜃 𝑥𝑇 − 𝔼𝑞(𝑥1|𝑥0) log 𝑝𝜃 (𝑥0 |𝑥1 ) + ෍ 𝑡=2 𝑇 𝔼𝑞(𝑥𝑡|𝑥0) 1 2𝜎𝑡 2 ෤ 𝜇𝑡 𝑥𝑡 ,𝑥0 − 𝜇𝜃 (𝑥𝑡 , 𝑡) 2 + const. 𝜖

Slide 31

Slide 31 text

• 𝜖 • • = 𝔼𝑡,𝜖 𝜖 − 𝜖𝜃 ( ത 𝛼𝑡 𝑥0 + 1 − ത 𝛼𝑡 𝜖, 𝑡) 2

Slide 32

Slide 32 text

• • • 𝑡~𝑈(1,𝑇) 𝑥0 𝜖~𝑁(0,1) 𝜖𝜃 ത 𝛼𝑡 𝑥0 + 1 − ത 𝛼𝑡 𝜖

Slide 33

Slide 33 text

• • • • 𝛽𝑡 • 𝛽1 = 10−4, 𝛽𝑇 = 0.02 • 𝜎𝑡 • 𝜎𝑡 2 = 𝛽𝑡 •

Slide 34

Slide 34 text

𝑁ℎ 𝑁𝑚 𝑁𝑙 𝑁𝑏 𝑁𝑙 𝑁𝑚 𝑁ℎ 𝑡

Slide 35

Slide 35 text

𝑁ℎ 𝑁𝑚 𝑁𝑙 𝑁𝑏 𝑁𝑙 𝑁𝑚 𝑁ℎ 𝑡

Slide 36

Slide 36 text

𝑁ℎ 𝑁𝑚 𝑁𝑙 𝑁𝑏 𝑁𝑙 𝑁𝑚 𝑁ℎ 𝑡

Slide 37

Slide 37 text

Slide 38

Slide 38 text

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

• • •

Slide 41

Slide 41 text

• • •

Slide 42

Slide 42 text

• 𝑡

Slide 43

Slide 43 text

• 𝑡

Slide 44

Slide 44 text

Slide 45

Slide 45 text

•  

Slide 46

Slide 46 text

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Slide 51

Slide 51 text

• • 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )

Slide 52

Slide 52 text

• • 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )

Slide 53

Slide 53 text

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

• • 𝑡0 𝑥𝑡0 𝑡0 𝑥𝑡0−1 𝑥𝑡0 𝑥0 𝑥𝑇 𝑡0

Slide 56

Slide 56 text

• •

Slide 57

Slide 57 text

• 𝑦 = 𝐻𝑥 + 𝑛

Slide 58

Slide 58 text

• • 𝑥~𝑝(𝑥) 𝑦 𝑥~𝑝(𝑥|𝑦)

Slide 59

Slide 59 text

• 𝑥𝑡−1 𝑥𝑡 𝑥0 𝑥𝑇 𝑦 = 𝐻𝑥 + 𝑛

Slide 60

Slide 60 text

• • 𝑥𝑡 𝑥𝑡−1 𝑥𝑡 𝑥0 𝑥𝑇 𝑦 = 𝐻𝑥

Slide 61

Slide 61 text

Slide 62

Slide 62 text

• • 𝑥0 𝑥𝑡−1 𝑥𝑡 𝐻 𝐻 𝑦 𝜇𝜃 𝐻 𝑥𝑡−1 𝑥𝑡−1

Slide 63

Slide 63 text

Slide 64

Slide 64 text

No content

Slide 65

Slide 65 text

• •

Slide 66

Slide 66 text

Slide 67

Slide 67 text

• •

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

# Initialization xt = random.normal(0, 1, (3,H,W)) # Reverse diffusion process for t in range(T, 0, -1): # estimate mean mu = estimate_mean(model, xt, t) # use fixed sigma sigma = beta[t] ** 0.5 # sample x_{t-1} xt = mu + sigma * random.normal(0, 1, (3,H,W)) # return x_0 return xt

Slide 70

Slide 70 text

𝑥𝑡−1 𝑥𝑡 𝑥𝑡−2 𝑥𝑡−1 𝑥𝑡 𝑥𝑡−2

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

• • • 𝑧1 𝑧𝑇 𝑧0 𝐻 × 𝑊 × 3 𝐻 𝑛 × 𝑊 𝑛 × 𝑐

Slide 75

Slide 75 text

• •

Slide 76

Slide 76 text

No content

Slide 77

Slide 77 text

• •

Slide 78

Slide 78 text

• • • 𝑥𝑡−1 𝑥𝑡 𝑥0 𝑥𝑇 𝑥𝑡−1 𝑥𝑡 𝑥0 𝑥𝑇

Slide 79

Slide 79 text

No content

Slide 80

Slide 80 text

• • 𝜏1 ,… , 𝜏𝑆 (𝜏𝑖 ∈ [1,𝑇]) 𝛽 𝛽𝜏𝑖 = 1 − ෑ 𝑗=𝜏𝑖−1+1 𝜏𝑖 1 − 𝛽𝑗 𝜏𝑖−1 𝜏𝑖 𝑥𝑡−1 𝑥𝑡 𝑥𝑡−2 𝑥𝑡−1 𝑥𝑡 𝑥𝑡−2 𝜏𝑖

Slide 81

Slide 81 text

Slide 82

Slide 82 text

No content

Slide 83

Slide 83 text

• • 𝑥 𝑡 = 0 𝑡 = 𝑇 𝑥0 𝑥𝑇 𝑥𝑇−1 𝑥1 𝑥𝑡+1 = 1 − 𝛽𝑡+1 𝑥𝑡 + 𝛽𝑡+1 𝜖

Slide 84

Slide 84 text

• 𝑥 𝑡 = 0 𝑡 = 1 𝑥0 𝑥1 d𝑥 = − 1 2 𝛽 𝑡 𝑥 d𝑡 + 𝛽(𝑡) d𝑤 𝑤

Slide 85

Slide 85 text

⇒ ⇒ 𝑁(𝑥𝑡 ; 1 − 𝛽𝑡 𝑥𝑡−1 , 𝛽𝑡 𝐈) 𝑁(𝑥𝑡−1 ; 𝜇𝜃 (𝑥𝑡 ,𝑡),𝜎𝑡 2𝐈) d𝑥 = − 1 2 𝛽 𝑡 𝑥 d𝑡 + 𝛽(𝑡) d𝑤

Slide 86

Slide 86 text

⇒ ⇒ 𝑁(𝑥𝑡 ; 1 − 𝛽𝑡 𝑥𝑡−1 , 𝛽𝑡 𝐈) 𝑁(𝑥𝑡−1 ; 𝜇𝜃 (𝑥𝑡 ,𝑡),𝜎𝑡 2𝐈) d𝑥 = − 1 2 𝛽 𝑡 𝑥 d𝑡 + 𝛽(𝑡) d𝑤

Slide 87

Slide 87 text

• 𝑥 𝑡 = 0 𝑡 = 1 𝑥0 𝑥1 ഥ 𝑤 d𝑥 = −𝛽 𝑡 1 2 𝑥 + ∇𝑥 log 𝑞𝑡 (𝑥) d𝑡 + 𝛽(𝑡) dഥ 𝑤

Slide 88

Slide 88 text

• • • d𝑥 = −𝛽 𝑡 1 2 𝑥 + ∇𝑥 log 𝑞𝑡 (𝑥) d𝑡 + 𝛽(𝑡) dഥ 𝑤 𝑥1 ~𝑞1 (𝑥) 𝑠𝜃 𝑥 = − 𝜖𝜃 (𝑥, 𝑡) 1 − ത 𝛼𝑡

Slide 89

Slide 89 text

∇𝑥 log 𝑞𝑡 (𝑥) 𝜖𝜃 (𝑥𝑡 ,𝑡) 𝔼𝑞𝑡(𝑥) 1 2 𝑠𝜃 𝑥 − ∇𝑥 log 𝑞𝑡 𝑥 2 𝔼𝑥0~𝑞0(𝑥) 𝜖~𝑁(0,𝐼) 𝜖𝜃 ( ത 𝛼𝑡 𝑥0 + 1 − ത 𝛼𝑡 𝜖, 𝑡) − 𝜖 2 𝑠𝜃 𝑠𝜃 𝑥 = − 𝜖𝜃 (𝑥,𝑡) 1 − ത 𝛼𝑡

Slide 90

Slide 90 text

⇒ ⇒ 𝑁(𝑥𝑡 ; 1 − 𝛽𝑡 𝑥𝑡−1 , 𝛽𝑡 𝐈) 𝑁(𝑥𝑡−1 ; 𝜇𝜃 (𝑥𝑡 ,𝑡),𝜎𝑡 2𝐈) d𝑥 = − 1 2 𝛽 𝑡 𝑥 d𝑡 + 𝛽(𝑡) d𝑤 d𝑥 = −𝛽 𝑡 1 2 𝑥 − 𝜖𝜃 (𝑥, 𝑡) 1 − ത 𝛼𝑡 d𝑡 + 𝛽(𝑡) dഥ 𝑤

Slide 91

Slide 91 text

• • d𝑥 = −𝛽 𝑡 1 2 𝑥 + ∇𝑥 log 𝑞𝑡 (𝑥) d𝑡 + 𝛽(𝑡) dഥ 𝑤 𝑥1 ~𝑞1 (𝑥) d𝑥 = −𝛽 𝑡 1 2 𝑥 + 1 2 ∇𝑥 log 𝑞𝑡 (𝑥) d𝑡 𝑥1 ~𝑞1 (𝑥) 𝑥1 𝑥0

Slide 92

Slide 92 text

𝑥 𝑡 = 0 𝑡 = 1 𝑥 𝑡 = 0 𝑡 = 1 𝑞0 (𝑥) 𝑞𝑡 (𝑥) 𝑞1 (𝑥) 𝑞0 (𝑥) 𝑞𝑡 (𝑥) 𝑞1 (𝑥)

Slide 93

Slide 93 text

• ∆𝑡 𝑥 𝑥1 𝑥0 𝑥 𝑡 − ∆𝑡 = 𝑥𝑡 − ∆𝑡 ቤ d𝑥 d𝑡 𝑥=𝑥𝑡 𝑥 𝑡 = 0 𝑡 = 1 𝑥0 𝑥∆𝑡 𝑥1 𝑥1−∆𝑡 d𝑥 = −𝛽 𝑡 1 2 𝑥 + 1 2 ∇𝑥 log 𝑞𝑡 (𝑥) d𝑡 ∆𝑡 𝑥

Slide 94

Slide 94 text

• ∆𝑡 ∆𝑡

Slide 95

Slide 95 text

𝑡 𝑡 𝑡 𝑡 𝜎′1/𝜌 log 𝛼 1−𝛼 𝑡1/𝜌

Slide 96

Slide 96 text

𝑡 𝑡 𝑡 𝑡 𝜎′1/𝜌 log 𝛼 1−𝛼 𝑡1/𝜌

Slide 97

Slide 97 text

𝑡 𝑡 𝑡 𝑡 𝜎′1/𝜌 log 𝛼 1−𝛼 𝑡1/𝜌 𝑥 ∆𝑡

Slide 98

Slide 98 text

No content

Slide 99

Slide 99 text

No content

Slide 100

Slide 100 text

No content

Slide 101

Slide 101 text

No content