Slide 31
Slide 31 text
/29
主な⽂献
• [Okumura+ IJCAI-23a] Okumura, K. & Defago, X. “Quick Multi-Robot Motion Planning by Combining Sampling and Search.” IJCAI.
2023. In Press.
• [Yu+ AAAI-13] Yu, J., & LaValle, S. “Structure and intractability of optimal multi-robot path planning on graphs.” AAAI. 2013.
• [Ma+ AAAI-16] Ma.,H., Tovey, C., Sharon, G., Kumar, T. S., & Koenig, S. “Multi- agent path finding with payload transfers and the
package-exchange robot-routing problem.” AAAI. 2016.
• [Banfi+ RA-L-17] Banfi, J., Basilico, N., & Amigoni, F. “Intractability of time-optimal multirobot path planning on 2d grid graphs
with holes.” RA-L. 2017.
• [Hart+ 68] Hart, E. P., Nilsson, J. N. & Raphael, B. “A formal basis for the heuristic determination of minimum cost paths.” IEEE
transactions on Systems Science and Cybernetics. 1968.
• [Stern+ SOCS-19] Stern, R., et al. “Multi-agent pathfinding: Definitions, variants, and benchmarks.” SOCS. 2019.
• [Shraon+ AIJ-15] Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. “Conflict-based search for optimal multi-agent pathfinding.”
AIJ. 2015.
• [Li+ AAAI-21] Li, J., Ruml, W., & Koenig, S. “EECBS: A Bounded-Suboptimal Search for Multi-Agent Path Finding.” AAAI. 2021.
• [Erdmann+ 87] Erdmann, M., & Lozano-Perez, T. “On multiple moving objects.” Algorithmica. 1987.
• [Silver AIIDE-05] Silver, D. “Cooperative pathfinding.” AIIDE. 2005.
• [Okumura+ AIJ-22] Okumura, K., Machida M., Défago, X. & Tamura, Y. “Priority Inheritance with Backtracking for Iterative Multi-
agent Path Finding.” AIJ. 2022.
• [Okumura AAAI-23] LaCAM: Search-Based Algorithm for Quick Multi-Agent Pathfinding. AAAI. 2023.
• [Okumura IJCAI-23] Improving LaCAM for Scalable Eventually Optimal Multi-Agent Pathfinding. IJCAI. 2023. In Press.
• [Kavraki+ 96] Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces.” IEEE transactions on Robotics and Automation. 1996.
• [Okumura+ AAMAS-22] Okumura, K. et al. “CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path
Planning in Continuous Spaces.” AAMAS. 2022.
• [Salzmann+ ECCV-20] Salzmann, T., Ivanovic, B., Chakravarty, P., & Pavone, M. "Trajectron++: Dynamically-feasible trajectory
forecasting with heterogeneous data.” ECCV. 2020.
登場順
31