Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
Cultivating Instinct Katrina Owen Exercism
Slide 2
Slide 2 text
"You're Dr. Vilayanur S. Ramachandran!" —me
Slide 3
Slide 3 text
"Yes. Yes I am." —vsr
Slide 4
Slide 4 text
(very politely): "Who the hell are you?" —vsr
Slide 5
Slide 5 text
"Some rando." —me
Slide 6
Slide 6 text
"..." —vsr
Slide 7
Slide 7 text
"I live with a synaesthete!" —me
Slide 8
Slide 8 text
No content
Slide 9
Slide 9 text
"Two is such a cheerful, cuddly number!" —my classmate
Slide 10
Slide 10 text
No content
Slide 11
Slide 11 text
No content
Slide 12
Slide 12 text
"I'm hungry." —babies everywhere
Slide 13
Slide 13 text
Expertise
Slide 14
Slide 14 text
An expert isn't just a faster novice.
Slide 15
Slide 15 text
Intuition
Slide 16
Slide 16 text
TODO picture
Slide 17
Slide 17 text
"You can see bacteria from 40k feet?!?" —researcher
Slide 18
Slide 18 text
Experts can't tell you how they know
Slide 19
Slide 19 text
How do you teach intuition?
Slide 20
Slide 20 text
They don't know how they know.
Slide 21
Slide 21 text
Well, actually...
Slide 22
Slide 22 text
TODO picture
Slide 23
Slide 23 text
Science
Slide 24
Slide 24 text
Dr. Eleanor Gibson
Slide 25
Slide 25 text
No content
Slide 26
Slide 26 text
No content
Slide 27
Slide 27 text
No content
Slide 28
Slide 28 text
Meaningful dimensions
Slide 29
Slide 29 text
No content
Slide 30
Slide 30 text
Differentiation
Slide 31
Slide 31 text
Perceptual resolution
Slide 32
Slide 32 text
TODO picture
Slide 33
Slide 33 text
Perceptual learning
Slide 34
Slide 34 text
Differences in perception of novices and experts
Slide 35
Slide 35 text
How we extract information
Slide 36
Slide 36 text
Units
Slide 37
Slide 37 text
Novices see unrelated pieces of data. Experts see patterns.
Slide 38
Slide 38 text
Selectivity
Slide 39
Slide 39 text
Novices pay attention to irrelevant data. Experts don't even notice it.
Slide 40
Slide 40 text
How we extract information
Slide 41
Slide 41 text
How efficiently we extract information
Slide 42
Slide 42 text
Search type
Slide 43
Slide 43 text
Novices process serially. Experts process in parallel.
Slide 44
Slide 44 text
Novices process slowly. Experts process quickly.
Slide 45
Slide 45 text
Novices have a high attentional load. Experts process effortlessly.
Slide 46
Slide 46 text
No content
Slide 47
Slide 47 text
Discovery effects units selectivity
Slide 48
Slide 48 text
Fluency effects speed search type attentional load
Slide 49
Slide 49 text
TODO picture
Slide 50
Slide 50 text
Dr. Philip Kellman
Slide 51
Slide 51 text
TODO picture
Slide 52
Slide 52 text
Visual navigation
Slide 53
Slide 53 text
20 seconds of video 3 locations on a map
Slide 54
Slide 54 text
Reaction time: 30s
Slide 55
Slide 55 text
Accuracy: 50%
Slide 56
Slide 56 text
3 hours of training
Slide 57
Slide 57 text
Accuracy: 80% (up from 50%)
Slide 58
Slide 58 text
Reaction time: 15s (down from 30s)
Slide 59
Slide 59 text
Naive subjects
Slide 60
Slide 60 text
Accuracy: 60% (up from: random guess)
Slide 61
Slide 61 text
Reaction time: 20s (down from: dismal)
Slide 62
Slide 62 text
Non-pilots crushed it
Slide 63
Slide 63 text
TODO picture
Slide 64
Slide 64 text
Find a part (given the whole)
Slide 65
Slide 65 text
Find the whole (given a part)
Slide 66
Slide 66 text
Different representations
Slide 67
Slide 67 text
Scores improved (dramatically)
Slide 68
Slide 68 text
TODO picture
Slide 69
Slide 69 text
Perceptual Learning in Code
Slide 70
Slide 70 text
"You have a race condition on line 26." —my friend
Slide 71
Slide 71 text
Code review
Slide 72
Slide 72 text
Troubleshooting
Slide 73
Slide 73 text
TODO picture
Slide 74
Slide 74 text
Profiling
Slide 75
Slide 75 text
Refactoring
Slide 76
Slide 76 text
"How do you know where to begin?" —lots of people
Slide 77
Slide 77 text
Debugging
Slide 78
Slide 78 text
"Wait, what's that foreign key value?" —@tenderlove
Slide 79
Slide 79 text
mysql's max int 2,147,483,647
Slide 80
Slide 80 text
TODO picture
Slide 81
Slide 81 text
Abstractions
Slide 82
Slide 82 text
99 Bottles of Beer on Exercism
Slide 83
Slide 83 text
TODO picture
Slide 84
Slide 84 text
"How did you know?" —me
Slide 85
Slide 85 text
"It was obvious." —Sandi
Slide 86
Slide 86 text
Instinct (explained)
Slide 87
Slide 87 text
TODO picture
Slide 88
Slide 88 text
An Amateur's Guide
Slide 89
Slide 89 text
Brief classification episodes
Slide 90
Slide 90 text
Active judgement
Slide 91
Slide 91 text
Feedback
Slide 92
Slide 92 text
TODO picture
Slide 93
Slide 93 text
Lots of examples
Slide 94
Slide 94 text
No duplicates
Slide 95
Slide 95 text
Complex variation
Slide 96
Slide 96 text
Noise and distractors
Slide 97
Slide 97 text
TODO picture
Slide 98
Slide 98 text
Identifying a target skill
Slide 99
Slide 99 text
???
Slide 100
Slide 100 text
Naturalistic Decision Making
Slide 101
Slide 101 text
Sources of Power by Gary Klein
Slide 102
Slide 102 text
What next?
Slide 103
Slide 103 text
Unambiguous taxonomy
Slide 104
Slide 104 text
Well-defined activity
Slide 105
Slide 105 text
Fundamental distinction
Slide 106
Slide 106 text
No content
Slide 107
Slide 107 text
Programmer population doubles every 5 years
Slide 108
Slide 108 text
50% of programmers have <5 years experience
Slide 109
Slide 109 text
No signal—just noise
Slide 110
Slide 110 text
We need to go beyond the mere mechanics
Slide 111
Slide 111 text
Thank you
Slide 112
Slide 112 text
Katrina Owen @kytrinyx Co-founder and Principle Janitor Exercism
Slide 113
Slide 113 text
Katrina Owen @kytrinyx Co-author, with Sandi Metz 99 Bottles of OOP
Slide 114
Slide 114 text
Cultivating Instinct