×
Copy
Open
Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
lim n→∞ nk an April 21, 2017
Slide 2
Slide 2 text
n, k : ࣗવ a : ਖ਼ͷ࣮ ͠ a ≤ 1 ͳΒ໌Β͔ʹ nk/an → ∞ (n → ∞) ͳͷͰɺa > 1 ʹର ͯ͠ lim n→∞ nk an = 0 Λূ໌͠·͢ɻ
Slide 3
Slide 3 text
a > 1 ͳͷͰ a = 1 + h (h > 0) ͱ͓͚·͢ɻೋ߲ఆཧΑΓ an = (1 + h)n = nC01 + nC1h + nC2h2 + · · · + nCnhn Ͱ͕͢ɺn → ∞ ͱ͢ΔͷͰ k < n ͱԾఆ͍͍ͯ͠Ͱ͢ɻ͜ͷͱ͖ an = nC0 + · · · + nCk+1hk+1 + · · · + nCnhn ≥ nCk+1hk+1 ͕Γཱͪ·͢ɻ
Slide 4
Slide 4 text
an ≥ nCk+1hk+1 ͕͔ͬͨͷͰ 0 ≤ nk ak ≤ nk nCk+1hk+1 = nk n! (n − (k + 1))!(k + 1)! hk+1 = nk n(n − 1) · · · (n − k) (k + 1)! hk+1 = 1 n(1 − 1/n) · · · (1 − k/n) (k + 1)! hk → 0 (n → ∞) ͱͳͬͯɺ lim n→∞ nk an = 0 ͕ূ໌͞Ε·ͨ͠ɻ